HTML AESTRACT * LINKEES

APPLIED PHYSICS LETTERSB6, 071922(2005

Photoinduced resistivity changes in Bi  ;4,CaggMnO5 thin films
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We report charge-ordered BiCa MnO; thin films with charge-ordering temperature near room
temperature, and observation of large photoinduced resistivity changes in these films associated with
melting of the charge ordering by visible light. Films grown under small compressive strain exhibit
the largest photoinduced resistivity changes. The lifetime of the photoinduced low-resistance state
is on the order of half a minute. These photoinduced resistivity changes in thin films of
Big 4Ca MNO; make them very promising for photonic device application2@5 American
Institute of Physic§ DOI: 10.1063/1.1868869

Doped rare-earth manganitéy_,AMnO; (R being a ture near room temperature, and observation of large photo-
trivalent rare-earth and being a divalent alkaline-earth ipn induced resistivity changes in these films. This development
exhibit a large diversity in electronic, magnetic, and orbitalbecame possible due to the key role of strain on the photo-
states due to the complex interplay of the corresponding desensitivity of thin Bp Ca gMNnO; films. It opens real possi-
grees of freedom. One of the most intriguing properties otilities for photonics device applications of these materials.
manganites is charge orderif@0), wherein holes are local- Thin films were grown by the pulsed-laser deposition
ized at fixed positions of the M ions!™ Application of  technique from a polycrystalline target with nominal compo-
magnetic field, electric field, or electromagnetic wave irra-sition of BiyCa gMnO;. The substrates used wef&00]
diation drastically modifies the charge-ordered state, induckaAlO; (LAO), which has a pseudocubic crystallographic
ing an insulator-to-metal transitidm’ A photoinduced  structure witha=3.79 A, and[100] SrTiO; (STO) with a
insulator-to-metal transition in manganese oxides is espe=3.905 A of a cubic structure. The laser energy density on
cially interesting from the point of view of creating photonic the target was about 1.7 J/énand the deposition rate was
band-gap materiafs which allow control of dispersion and 10 Hz. The LAO and STO substrates were kept at a constant
propagation of light. One can anticipate that a high refractivdaemperature of 800 °C during the deposition. The deposition
index contrast between the photoinduced conducting and irwas carried out at a pressure of 400 mTorr of flowing oxy-
sulating phases of CO manganites would be sufficient fogen. After deposition, the samples were slowly cooled to
development of a photonic crystal material. Once createdioom temperature at a pressure of 400 Torr of oxygéas
such a material would be quite unusual, since its propertiescans show that films are epitaxial and single phase. The
could be easily tuned by application of a modest electric ofwidth of rocking curves, 0.04° for films grown on LAO and
magnetic field. In addition, since conductive properties, and).3° for films grown on STO, shows good crystallinity of
therefore optical contrast, of the CO manganites are veryhese films. Direct current resistivity was measured by a
sensitive to temperature, one could expect the developmen$ur-probe method. For sample illumination we used a con-

of rewritable photonic devices. _ tinuous argon laser with 514, 488, 476, and 457 nm wave-
~Recently, we observed permanent photoinduced refleqengths, which has power of 150 mW in multiline mode.
tivity changes in a charge-ordered ,BCa MnO; single Bulk Bij 4Cay gMNO; has a CO temperature of 330°K.

crys_tal,lo and demonstrated that this phenomenon can be poxt the CO transition, the temperature dependence of the re-
tentially used for creation of various photonic crystal mate-sistivity has a kink(a change in derivatiyeaccompanied by
rials. However, since visible light penetrates into the bulk ofg peak in the temperature dependence of magnetiz]ahion.
this material only to a depth of about 300 ffthin films of ~ oyr target material has similar properties: the CO tempera-
Bi;CaMnO; with CO at room temperature are necessarure (Tco) is 333 K, as indicated by the temperature depen-
for photonics applications. Preparation of such thin films preence of the resistivityFig. 1) and by a peak in the tempera-
sents quite a few challenges, since as a rule, thin-film propg,re dependence of magnetizatiorot show.

erties differ from the properties of bulk material due to strain - Tne rise in resistivity at the CO temperature in thin films
effects, changes in the magnetic and electron transport progs ot as sharp as observed in the bulk material, as was noted

erties, etc. previously for the charge-ordered thin films of a different

The main results of this work is the first preparation of ;omposition? The CO temperature for thin films on LAO is
charge-ordered BiCa MnOs thin films with CO tempera-  |gyer than for the bulkTeo=274 K for 120-nm-thick film

and 256 K for 40 nm. On the contrary, the films grown on
¥Electronic mail: vsmolyaninova@towson.edu STO have CO temperatufig 5=347 K, which is higher than
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FIG. 1. Temperature dependence of resistivity of Bigy MnO; polycrys-
talline target and thin films of different thicknesses grown on LAO and STO
substrates. The CO temperatures are indicated with the arrows.
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the T of the bulk material. Our preliminary resonant and o1
nonresonant x-ray scattering measurements on these films
detected peaks associated with charge ordering below CO
temperatures, consistent with the resistivity measurenténts.
Such significant difference in CO temperatures for thin films
grown on different substrates indicates the large effect of
substrate-induced strain in thin films of,BiCaMnQOj. The
lattice parameters of LAO and STO are 3.79 and 3.905 A
respectively, while corresponding lattice parameter for
Big 4Cay gMNO; is V13=3.81 A Therefore, films grown on
LAO have small compressive strain, while films grown onFIG. 2. Photoinduced resistivity changes fop Ba, MnOs thin films: (a)
STO are under tensile strain. Previously reported studies ¢f0 nm on STO(b) 40 nm on LAO, andc) 120 nm on LAO. Inset shows
charge-ordered N)Q,SI‘O.5|V|I’IO3 and Pg sCa sMnO; thin _expe_rlmental cgrrent and voltage contact conflguratlon with respect to_the
. . 4 illuminated region. All temperature dependencies are taken on warming.
films of different thicknesses on STO and LAO do not ShoWTemperature dependencies of resistivity without illumination are shown
any significant difference iffco for films of different thick-  with the dashed line. Solid line represents temperature dependencies of re-
nesses or grown on different substrate® A detailed study sistivity of illuminated samples. Arrows indicate the temperatures at which
of strain effects on CO in BL,CaMnO; films will be pub-  laser light was switched on or off.
lished elsewher®

Light-induced resistivity changes in RiCa, gMNnO; thin Thicker films (120 nm on LAO and ST exhibit a
films are shown in Fig. 2. For this experiment we used amuch smaller photoinduced effect. The result for a 120 nm
four-in-line electrical contact configuration, as shown inon LAO is shown in Fig. &). Such a remarkable change in
[Fig. 2(a) insef. The distance between voltage contacts washe photoinduced effect for films of different thicknesses
approximately 0.3 mm. The space between voltage contactuggests that the substrate induced strain plays a significant
was illuminated with full powef150 mW multivavelength  role in properties of the charge-ordered thin films of
(514, 488, 476, and 457 nmargon laser light. The laser Big,Ca ¢MnO;. It appears that in thinner films, which are
beam was slightly focused with a 100 mm focal length lensmore strained, the charge ordering is weaker, or less stable,
producing an illuminated region on the sample of approxi-and therefore more susceptible to the argon laser light illu-
mate diameter of 0.05 mm and power density at the illumi-mination, than that for thicker, more relaxed films, which
nated region of approximately>610* W/cn?. exhibit very small photoinduced resistivity changes. The in-

When the 40 nm film grown on STO was illuminated fluence of strain on the CO of thin films was reported
with argon laser light, its resistivity decreased approximatelypreviously***>*"1° |t was noted that the CO in
by a factor of 2[Fig. 2(a)]. This change persisted up to PrysCa; sMnOs thin films grown on STO and LAO was de-
295 K with laser light on. The photoinduced resistivity stroyed by the application of a much weaker magnetic field
change was not studied at higher temperature, since we dban that req7uired for a bulk material of the same
not have an optical access in the high temperature setupompositionl.s'l However, thinner films of RrCa sMnOg
When the illumination was switched off, the resistivity of the were less susceptible to the influence of magnetic field than
sample returned to its previous vallleig. 2(a)]. A much thicker filmsX® while our results show that the CO in thinner
more striking effect was observed for the 40 nm film grownfilms of Biy ,Ca, gMNO5 can be more easily destabilized by
on LAO. When this film was illuminated, its resistivity de- light than that in thicker films. CO transition in bulk
creased by about one order of magnitude, almost returning tBig ,Ca, MNO5 is accompanied by a structural transition,
the value of resistivity for temperatures above the CO tranwhich leads to a sharp increase of lattice parametensdc
sition [Fig. 2(b)]. These data were taken while the sample(a=c) and a sharp decrease of lattice parambtéQr Such
temperature was ramped up at a rate of 2 K/min. This allowghanges provide lattice distortion necessary for existence of
us to notice that the resistivity decreases rather slowly undethe CO phase. They are typical for all the CO materidls.
illumination, and also returns slowly to its higher value, Compressive strain should reduce in-plane lattice parameters
when the light is switched offFig. 2(b)]. This photoinduced (a andc) in films grown on LAO resulting in smaller lattice
change persists up to the CO temperai@®6 K). This in-  distortion, which could make the CO weaker in these
dicates that the observed photoinduced resistivity change samples. On the other hand, tensile strain provided by STO

associated with melting of the CO. substrate should increase in-plane lattice parameters, result-
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160 __on (a) This increase in the relaxation time with intensity is in agree-

! ment with our previous resultd, where for much higher
power density(approximately 5<10° W/cn?), permanent
(more than 1 h photoinduced optical reflectivity changes
were observed.

; In conclusion, we have developed charge-ordered

8 off Big.4Ca ¢gMNnO; thin films with CO temperature near room

0 160 200 300 490 500 temperature. We have observed large photoinduced resistiv-
t (sec) ity changes in these films associated with melting of the CO
by visible light with wavelength around 500 nm. The
351 {b) . substrate-induced strain makes the CO less stable and more
susceptible to breakdown by illumination with visible light.

o 304 . Thus, thinner films grown on different substrates exhibit a
a larger drop in resistivity under illumination than do thicker

- ol films. The largest photoinduced resistivity changes were ob-
: served for thin, 40 nm, films grown under small compressive
strain (on LAO). The lifetime of the photoinduced low-
resistance state is of the order of half a minute and increases
with intensity. Reported photoinduced resistivity changes in
FIG. 3. (a) Time dependence of resistance of a 40 nm,Ba,MnO; fiim  thin films of Biy ,Ca MNO; make this material very prom-

on LAO at T=100 K with 29% of full laser power switched on and off. ising for photonic device application.

Solid lines are fits to the exponential time dependefBe:exp(—t/ 7). (b)
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