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Magnetic liquids under high electric fields as broadband optical diodes

Jonas P. Pereira,1,2,3,* Igor I. Smolyaninov,4,† and Vera N. Smolyaninova2,‡
1CAPES Foundation, Ministry of Education of Brazil, Brası́lia, Brazil

2Department of Physics, Astronomy and Geosciences, Towson University, 8000 York Road, Towson, Maryland 21252-0001, USA
3Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, CEP 09210-580,
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We show that unidirectional propagation of light rays in the limit of geometric optics could arise in some
magnetic fluids due to the magnetoelectric effect under weak DC magnetic fields and strong DC electric fields
around half of their dielectric breakdown. For such liquids as kerosene and transformer oils, one-way propagation
of light may occur for 30-nm-diameter magnetic nanoparticles (e.g., cobalt) and concentrations of 2% or larger.
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I. INTRODUCTION

As clear from its nature, the phenomenon of one-way
propagation of light (an optical diode [1]) requires violations
of time-reversal and parity symmetries of a physical system,
leading the frequency (ω) of a propagating wave to behave
differently for opposite directions of its wave vector �q, ω(�q) �=
ω(−�q) (see Ref. [3] and references therein). This situation
occurs naturally in the presence of external electromagnetic
fields in magnetoelectric media [3,4]. In order to render the
(nonlinear) magnetoelectric effect experimentally noticeable
(it is usually very small in magnitude and not common in
material media [3,4]), one should work with metamaterials. In
such engineered media the basic constituents are much smaller
than the wavelengths of the propagating waves, resulting in
controllable dielectric coefficients (permittivity and perme-
ability) [5–8]. In this regard, it seems that magnetic liquids,
host liquid media in the presence of magnetic nanoparticles [9],
could be potential candidates for optical diodes since their
magnetoelectric response to external fields is controllable and
can reach high values.

Magnetic nanoparticles are easily produced and con-
trolled [9] and naturally lead to self-assembled three-
dimensional metamaterials when coated (with fatty acids)
and inserted into a host liquid medium (usually oils or
kerosene) under external magnetic fields [10]. This situation
has clear advantages compared to challenging nanofabrication
of three-dimensional metamaterials, due to their intrinsic small
dimensions compared to the light wavelengths. Magnetic
nanoparticles are also very attractive because they are used
in several areas of biomedicine, such as cancer treatments
and magnetic resonance imaging (see, e.g., Refs. [11,12] and
references therein), and in power lines for cooling transformers
and enhancing their dielectric properties [13,14].

Conventional optical diodes are usually related to pho-
tonic crystals (periodic structures whose basic constituents’
dimensions are of the order of the wavelengths of the

*jpereira@towson.edu, jonas.pereira@ufabc.edu.br
†smoly@umd.edu
‡vsmolyaninova@towson.edu

propagating waves) by means of the magneto-optic effect;
see, e.g., Refs. [15–19] and references therein. They can
also be related to other plasmonic designs such as nonlinear
chiral meta-atoms [20], nonlinear chiral ultrathin three-layered
structures [21], structures constructed with nonlinear silicon
microrings (without the presence of magnetic fields) [22],
periodically poled waveguides [23], two-layered ultrathin
metamaterials (both metallic) [24], etc. For further systems
and effects that lead to diodelike devices (optical isolators),
we refer the reader to Refs. [20–25]. The majority of diodelike
devices works in the infrared and terahertz ranges, are limited
in size, and are not economical to be scaled up [25]. Besides,
nonlinear devices based on the Kerr-effect intrinsically have
limitations in their nonreciprocity, which restrict their actua-
tion as optical isolators [26].

In this work we show that some magnetic liquids could also
behave as optical diodes in the limit of geometric optics (so that
this effect is intrinsically associated with light ray propagation)
if subjected to convenient external fields and do not exhibit
the above-mentioned problems. More explicitly, we show that
the optics of some liquids (transformer oils or kerosene) with
magnetic nanoparticles (cobalt or magnetite) of around 30
nm diameter and in concentrations around 2% or larger by
volume in the presence of small applied DC magnetic fields and
strong DC electric fields (around half the fluid’s breakdown)
may result in one-way propagation of light rays (see their
schematics in Fig. 1), mainly due to the magnetoelectric effect
they naturally exhibit (therefore, there is no limitation in their
nonreciprocity). Given that magnetic fluids are self-assembled
metamaterials already commercially available, optical diodes
associated with them would be easily produced, inexpensive,
and large in size, which are clear advantages compared to the
previously mentioned optical diode schemes.

The plan of this work is as follows. In the next section
we revisit the effective dielectric properties of magnetic
liquids in the presence of magnetic fields. Section III is
devoted to the investigation of a model of an optical diode
based on magnetic fluids subjected to high electric fields. In
Sec. IV we summarize the main issues raised in this paper.
We work with Cartesian coordinates and unless otherwise
specified, the speed of light in the vacuum is taken as
unity.
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FIG. 1. Schematic representation of a magnetic liquid in the
presence of external DC electric E(−ŷ) and magnetic Hẑ fields
and 30-nm magnetic nanoparticles (εi) in a host liquid medium
(εh). Chained nanoparticles have their magnetic moments aligned not
mainly due to the external magnetic field, but due to the fields of their
nearest (coated) neighbors. Misaligned nanoparticles, which are the
same in nature as the ones in the chains, have their magnetic moments
less aligned with the external magnetic field and are homogeneously
distributed in the host liquid. Aligned nanoparticles give rise to a wire
medium whose effective permittivity tensor is anisotropic and given
by Eqs. (4) and (5) (Sec. II). For waves propagating in the whole
xz plane, for instance, our system is such that the projection of rays
along the z direction is only positive, which shows its unidirectional
propagation aspect (Sec. III).

II. EFFECTIVE DIELECTRIC COEFFICIENTS
OF MAGNETIC LIQUIDS

Whenever one considers inclusions in a host medium that
line up in the presence of an external magnetic field [27],
assumed for specificity to be in the z direction, one comes up
with an effective uniaxial medium whose principal dielectric
coefficients may be calculated based on the Maxwell-Garnett’s
approximation as [8,14]

ε11 = ε22 = 2αεiεh + (1 − α)εh(εi + εh)

(1 − α)(εi + εh) + 2αεh

(1)

and

ε33 = αεi + (1 − α)εh, (2)

where α is the volume fraction of the lined up inclusions,
whose permittivity is εi , and εh is the permittivity of the
host medium. We will assume that in the frequency range
of interest, namely the near-infrared, the effective medium is
nonmagnetic, μ = 1, and therefore one can take �B or �H for
the magnetic field without distinction. Equations (1) and (2)
are actually good approximations for the effective permittivity
tensor of a composite medium only when α � 1. In this case,

one can Taylor expand Eq. (1) up to first order in α, yielding

ε11 = ε22 ≈ εh − 2αεh

εh − εi

εh + εi

. (3)

The alignment of the magnetic inclusions due to the
presence of a magnetic field takes place when they are metallic,
coated with fatty acid as a surfactant layer [10,28], and have
a nonzero resultant magnetic moment. In such a case we may
assume that α = α(T ,H ), where T is the temperature of the
system and H is the magnitude of the external magnetic
field [10]. In this way, one ends up effectively with the
permittivity being dependent upon the magnetic field. Besides,
due to the metallic inclusions present, the effective permittivity
tensor should also depend upon ω.

Note that the total volume fraction in the host medium
is a given constant, naturally related to very large values
of the magnetic field (situation where all nanoparticles are
aligned and participate in the aligned chains), and because of
that it will be denoted by α∞. This means that the quantity
[α∞ − α(T ,H )] is the volume fraction of the inclusions
misaligned with the magnetic field. They contribute to the per-
mittivity of the host medium for a given H . Therefore, based
on the Maxwell-Garnett approximation for homogeneously
distributed inclusions in three-dimensional space [8], one has
to make the substitution εh → εh{1 + 3[α∞ − α(T ,H )]} in
Eqs. (1)–(3). In our subsequent analysis we will consider
the typical case |εi | � εh, which naturally happens in the
near-infrared (see, e.g., Ref. [10] and references therein). In
such a case and taking into account the above-mentioned
effect of misaligned nanoparticles in the host medium, we
have (again up to first order in both α and α∞)

ε11 = ε22 ≈ εh(1 + 3α∞ − α) (4)

and

ε33 ≈ εh − α|εi |. (5)

One sees from Eq. (5) that the case ε33 ≈ 0 may take place in
some frequency range. There, though, ε11 is a given positive
constant. It is important to keep in mind that its value is slightly
different from εh and depends upon the external magnetic
field through α. As we will see in the next section, this is a
fundamental criterium for the effect of one-way propagation
of light, along with the presence of a suitable external electric
field.

III. A MODEL FOR ONE-WAY PROPAGATION
IN MAGNETIC FLUIDS

We now elaborate upon the properties that magnetic fluids
(specifically, the ferrofluids) should have for behaving as
optical diodes. Let us assume that an external DC electric field
is present in a direction perpendicular to the DC magnetic
field, that we define as the y direction, �E = Eŷ (E can be
either positive or negative). For an uniaxial medium whose
permittivity tensor has principal components ε11, ε11, and ε33

depending upon the magnetic field, one can show that in the
limit of geometric optics its Fresnel equation [29,30] splits
into (see the general formalism in Ref. [31])

ε11ω
2 − �q 2 + ∂ε11

∂B
Eωqx = 0 (6)
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and

(ε11 − ε33)q2
z − ε11(�q 2 − ω2ε33) = 0, (7)

where �q and ω are defined as the wave vector and angular
frequency of the propagating wave, respectively, qi , i =
(x,y,z), is any of its Cartesian components, and we recall
that we have assumed μ = 1. One can verify that an electric
field parallel to the magnetic field does not produce any effect
on the wave propagation. The solution to Eq. (7) can be cast
as

v
.= v±

0 = ±
√

ε11 + (ε33 − ε11)q̂2
z

ε33ε11
, (8)

while that to Eq. (6) simply reads

v
.= v±

1 = 1

2ε11

[
−∂ε11

∂B
Eq̂x ±

√
4ε11 +

(
∂ε11

∂B
Eq̂x

)2]
,

(9)

where we have defined q̂i
.= qi/|�q|. We recollect that �v = vq̂.

From Eq. (8) one clearly sees that opposite directions are
totally equivalent and therefore it represents a sole physical
solution. Though in the case of Eq. (9) opposite directions are
dissimilar, it also represents a single physical wave whenever
ε11 > 0, which is the case that we will consider here. Therefore,
waves would propagate in all directions. Notwithstanding, the
important quantity in the limit of geometric optics is the ray and
we should attach unidirectional propagation to it. We note that
in such a limit it is meaningful to define rays as a superposition
of waves even in the case of nonlinear media (see Refs. [32]
and references therein). Thus, rays can be easily derived from
the dispersion relation by differentiating it with respect to the
wave vector, �q, assuming that ω = ω(�q). In order to consider
ferrofluids as optical diodes in terms of rays, one should, first
of all, find a way to eliminate or disregard solutions to the
Fresnel equation that are symmetrical for opposite directions,
as is the case of Eq. (8). A natural way to do this would be when
its associated group velocity is zero or very small. It can be
readily checked that this is exactly the case whenever ε33 ≈ 0.
Henceforward we will only work within this condition. It is
important to stress that v+

1 , the only solution of physical interest
here, does not depend on ε33 and thus having the latter null
only makes the v+

0 solution disappear. It is simple to show that
the group velocity associated with v+

1 is

∂ω

∂ �q
.= �u = v+

1

ε11(v+
1 )2 + 1

(
2q̂ − ∂ε11

∂B
Ev+

1 x̂

)
, (10)

where it has been considered that in the frequency range of
interest ε11 does not vary significantly with ω. In order to
render simple the physical aspects of Eq. (10), let us analyze
the situation in which q̂ is in the xz plane. For this case,
q̂z = cos θ and q̂x = sin θ . When the wave propagates in the
plane perpendicular to the magnetic field, similar conclusions
to the ones to be drawn will arise. One should simply exchange
q̂z with q̂y in the subsequent analysis. When the wave is in the
plane defined by the external fields, unidirectional propagation
of rays does not take place (since q̂x = 0 in this case and
therefore v+

1 is isotropic).

When q̂ belongs to the xz plane, one sees from Eq. (10)
that the same happens to the group velocity and its direction
is determined by

tan ϕ = ux

uz

= tan θ − 1

2 cos θ

∂ε11

∂B
Ev+

1 . (11)

Observe from Eq. (10) [Eq. (11)] that the x axis is a symmetry
axis for the group velocities.

Let us first qualitatively investigate the properties that the
group velocity should have. As can be easily deduced from
Eq. (10), once Eq. (14) is fulfilled, for −π/2 < θ < π/2 we
have that tan ϕ admits a critical point at

sin θc = A2 − 4ε11

2A2
, (12)

where we have defined A = −E(∂ε11/∂B) only for notational
convenience. The associated critical group velocity angle is

tan ϕc =
√

3A2 − 4ε11

A2 + 4ε11
. (13)

From the fact that rays are symmetric with respect to the x axis,
ϕc actually defines the region in the xz plane where they could
propagate. From Eq. (13) we have that the maximum angle
for ϕc is π/3, obtained when |A| → ∞. Nevertheless, this
does not correspond to a physical scenario, for much before
that the medium should lose its dielectric properties (dielectric
breakdown [33]), completely modifying the above reasoning.

In the context of our analysis, one-way propagation of light
only takes places when Eq. (13) has a real solution, which is
equivalent to having that ux in Eq. (10) does not change sign.
Thus, (

∂ε11

∂B
E

)2

� 4ε11

3
. (14)

Since the electric field is still a free parameter, we will
assume that the one present in the ferrofluid satisfies the
above equation. Estimates of its magnitude will be given in
the sequel, when we propose a realization of our analysis. We
turn now to the dependence of ε11 on the magnetic field. We
will consider that the volume fraction of the inclusions aligned
to the magnetic field, giving rise to a wire medium, is [34]

α(H ) = α∞ tanh

(
μ̄H

kT

)
.= α∞ tanh x, (15)

where the total volume fraction of the inclusions satisfies the
constraint α∞ � 1, k is the Boltzmann constant (≈1.38 ×
10−16 erg K−1), and μ̄ is the intrinsic magnetic moment of the
inclusions, assumed to be identical. From the above equation
and Eq. (4) it ensues that

∂ε11

∂B
= −εhα∞

H

x

cosh2 x
. (16)

Note that ∂ε11/∂B is finite in the limit of zero magnetic field.
This means that nonlinear effects in magnetic fluids are present
even for small applied magnetic fields, which is somewhat
counterintuitive. Equation (16) has a maximum value, given εh

and H , at the solution of 2xc tanh xc = 1, which is xc ≈ 0.772,
yielding xc/ cosh2 xc ≈ 0.45. From Eqs. (4), (14), and (15), we
obtain that the absolute minimum electric field magnitude that
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leads to one-way propagation of light is

Emin ≈ 2.566
H

α∞
√

ε11
. (17)

Therefore, magnetic liquids could only behave as optical
diodes if their dielectric strengths are larger than Eq. (17).

The only physically reasonable situation for our analysis
is to consider temperatures above the freezing and below the
evaporating points of the host medium. In this regard, we
will work with room temperatures (T = 300 K). For dealing
with the smallest possible electric fields, from our previous
discussion, one should select magnetic fields of the order
of H = xckT /μ̄. For ordinary situations (μ̄ ≈ 104μB, μB =
9.274 × 10−21 erg/G, the Bohr magneton) (corresponding
to nanospheres of around 10 nm diameter), we have that
H ≈ 300 G, which, from Eq. (17), would lead to Emin ≈
104 statvolt/cm for α∞ ≈ 10−2 and ε11 of the order of
unity. This field is usually above the dielectric breakdown
of ordinary liquids, which is of the order of 103 statvolt/cm
(∼107 V/m) [35]. A solution to this problem is to increase μ̄.
If one assumes now that μ̄ ≈ 106μB , then the magnetic field
will be of the order of unity, so that the minimum electric field
will be smaller than 103 statvolt/cm for the same α∞ and εh as
previously. Therefore, optical diodes made of magnetic fluids
could only be realized for nanoparticles with 105–106 atoms.
This is possible in principle, since they should have diameters
around 30 nm (this could be attained, for instance, with the
thermal vaporization method [9]), which is smaller than the
critical diameter where they lose their single magnetic domain
geometry (around 100 nm [9,12]).

Let us now consider the issue of losses. From Eqs. (4)
and (5) we see that Im(ε11) is negligible for the frequency
range that we are interested in. For ε33 we have that Im(ε33) =
αIm(εi), which is also small even for lossy metals due to
α � 1. Since one-way propagation of light is only related to
v+

1 , one sees that metal losses do not play any role in the effect.
They actually reinforce the disregard of the v+

0 rays. Therefore,
the effect we propose is supposed to have a long propagation
length for the rays associated with v+

1 .
Kerr effects do not play any role in ordinary magnetic me-

dia. The reason is as follows: Such effects rise fundamentally
from the dependence of the host permittivity on the electric
field, generically written in the form ε̄h = εh +√

εhKλE2,
where K is the Kerr constant, which for ordinary liquids
(transformer oils, for instance) is of the order of 10−8

cm/(statvolt)2 [36], and λ the wavelength of the propagating
waves. One can show that it modifies Eq. (6) by a term
proportional to KλE2. Thus, corrections to Eq. (6) due to the
Kerr effect result in a term of the order of 10−8 for wavelengths
of some micrometers, permittivities of the order of unity, and
electric fields up to the dielectric breakdown. This is small and
hence can be disregarded.

Let us now consider a realization of our analysis. For
specificity, let us consider the transformer oil TECHNOL US
4000 as a host medium (εh = 2.15) [28] and magnetite Fe3O4

nanoparticles. Analysis with kerosene as the host medium
(εh ≈ 2.2) in the presence of cobalt nanoparticles [10] would
also lead to the same qualitative conclusions as the ones that
ensue, given that its dielectric strength is similar to that of
transformer oils [35].

- 0.5 0.5
uz

0.2

0.4

0.6

0.8

ux

FIG. 2. Ray surface associated with Eq. (10) for some transformer
oils where εh = 2.15, A = −1.82, and ε33 ≈ 0. The thick straight
lines, defined by Eq. (13), encompass the region of the xz plane
where rays can be found. For the parameters chosen, ϕc ≈ 16 deg.
For each group velocity direction within the aforementioned region,
related only to v+

1 , there are actually two associated wave directions.

Motivated by experimental analysis, let us investigate the
particular situation where α∞ = 0.02 and H ≈ 1 G. In this
case for nanoparticles of 10 nm, it is known that the breakdown
electric field varies from 6 to approximately 10 MV/m when
the distance of the electrodes varies from 1 to 0.1 mm,
respectively [28]. We assume that similar aspects hold true
when the diameters of the nanoparticles are increased to
around 30 nm. Given that we are working with T = 300 K
and μ̄ ≈ 106μB , we have x ≈ 0.22, which effectively leads
to |E| � 185 statvolt/cm [see Eqs. (16) and (14)]. Thus, let
us choose |E| = 190 statvolt/cm (≈5.7 MV/m), related to
A = −1.82 (E < 0) [37]. This value is small enough when
compared to the upper breakdown field given previously,
which means that the ordinary medium parameters are in
principle reliable for electrode distances of the order of some
tenths of millimeters.

Figure 2 depicts the ray surfaces for the aforementioned
magnetic liquid. We stress that there is no birefringence
involved in our model, for it only deals with one solution
to the Fresnel equation, v+

1 . Figure 2 is to be interpreted in the
following way. When one considers waves in all directions of
the xz plane, their associated rays (wave packets) are confined
in a region of this plane. Therefore, different wave directions
must be related to the same ray direction. This is a direct conse-
quence of Eq. (14) that guarantees that ux does not change sign.

For the specific example of Fig. 2, one can show that for
fields as high as 11 MV/m superluminal velocities do not
arise. Note that experimental results for 10-nm nanoparticles
suggest that superluminal velocities would only be related to
fields beyond breakdown, thus indicating their nonexistence
in our model.

Finally, given that ordinary magnetic fluids are colloids, one
might wonder what happens when the sizes of the nanoparti-
cles are increased. Actually, it turns out that the drift velocity
of a nanoparticle is independent of its mass when gravitational
forces are at play [38], which means that sedimentation for par-
ticles of different masses processes similarly when equilibrium
is not attained. Concerning diffusion (due to Brownian mo-
tion), at thermodynamic equilibrium the diffusion coefficient
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depends on the inverse of the mass of the nanoparticles [38].
This simply means that one should wait for a longer time for
heavier particles to distribute themselves inside the fluid.

A. Polarization

The polarizations (ei) for the waves associated with Eqs. (8)
and (9) can be found by simply solving its corresponding
eiginvalue equation related to the Fresnel equation (see
Ref. [31] for the general formalism). For the case q̂ belongs
to the xz plane and ε33 ≈ 0 one can show that the polarization
related to v+

1 is (b is a constant)

�ev+
1

= bŷ, (18)

which is always collinear to the external electric field. Since
this is so, the approximation that the resultant electric field is
the external one is an outstanding approximation. Therefore,
one-way propagation of light only occurs for waves whose
polarization is parallel to the electric field and is unaffected by
its aspects.

IV. SUMMARY

In this work we have shown that some fluids with magnetic
nanoparticles of 30 nm diameter (with magnetic moments of
approximately 106μB) in concentrations around 2% or larger

may behave as optical diodes for the propagation of light
rays in the presence of small DC magnetic fields and DC
electric fields of around half of their dielectric breakdown.
The effect only takes place when ε33 ≈ 0, implying that v+

0
rays (extraordinary rays) are suppressed, leaving only v+

1 rays
(generalization of ordinary rays in linear media), which have
negligible losses and are polarized in the direction of the
external electric field. Experimental results regarding dielec-
tric breakdown of magnetic fluids with 10-nm nanoparticles
suggest that superluminosity does not arise in our model,
indicating thus its physical reasonableness.
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de São Paulo (FAPESP), for partial support. We are indebted
to Dr. Michael Farle for useful comments on properties of
magnetic nanoparticles. This work was supported in part by
NSF Grant No. DMR-1104676.

[1] In general, devices that allow light to propagate only in one
direction are called optical isolators [2]. We use the term
diode instead of isolator in this work mainly because the
media that we will investigate present strong nonlinear response
to light propagation, allowing it to propagate only in one
direction, besides having limiting features such as dielectric
breakdown and specific DC electromagnetic fields for the effect
to take place, which resemble some of the aspects conventional
electronic diodes exhibit.

[2] D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets,
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