
Calculus I: Lab Notebook

Towson University
Department of Mathematics





Contents

Introduction to the SageMath Laboratories iii

To the Student v

Lab 1. Review of Functions and Introduction to SageMath 1
Exercises 2

Lab 2. Limits 5
Exercises 5

Lab 3. Limits II 7
Exercises 9

Lab 4. Functions and Their Derivatives 11
Exercises 13

Lab 5. Implicit Differentiation 15
Exercises 16

Lab 6. Extreme Values 19
Exercises 21

Lab 7. Newton’s Method 25
Exercises 27

Lab 8. Riemann Sums 29
Exercises 31

i





Introduction to the SageMath Laboratories

The Mathematics Department has developed a set of computer laboratory assignments to en-
hance the graphical and numerical understanding of concepts throughout Calculus I. The lab as-
signments use SageMath, an open-source computer algebra system, to guide students through a
variety of experiments that explore the ideas of Calculus. In particular, the use of SageMath will
also allow us to tackle some applications that would have otherwise been out of reach for technical
reasons. Moreover, by preparing and organizing their lab reports, students will learn to consolidate
mathematical ideas and will improve their mathematical communication skills.

To simplify access to SageMath and the lab assignments, the Mathematics Department main-
tains a dedicated WordPress site:

https://wp.towson.edu/math273/

This website hosts online versions of the labs, including the basic SageMath functionality required
to complete the assignments; it contains also some additional SageMath resources.

The labs are mostly self-guided: while the instructor may provide a brief overview or an expla-
nation of a certain point, students are expected to complete the lab mostly on their own. The online
version of each lab consists of several screens that mix instructions, the statements of questions,
and online interface to run SageMath commands.1 Students must read through the instructions and
then use the SageMath interface to perform the calculations required to answer the questions.

For each lab, students shall turn in a physical, filled lab report for grading. Blank lab re-
ports will be made available as PDF files by the instructor. Each lab report will include a list of
questions, based on those in the online assignments, but with some adjustments and with some
section-specific content. Students will need to use the SageMath interface in the online version of
the lab to answer the questions and will then write their answers in the lab report. Some questions
may require also the submission of printouts of work completed through the SageMath interface.

Moreover, students are required to keep electronic notes of their lab work in this lab notebook.
The PDF version of this notebook contains a complete record of the instructions for the labs,
including fillable blank fields where students can save any SageMath code they used online. As
they work through the examples, students are expected to fill those blank fields for future reference.
After each lab, the lab notebook provides also a field for notes, where the student can record any
information related to the lab, such as: hints or instructions given in class for completing the lab
report, reminders to self how to resolve certain issues, etc. Students shall turn a PDF file of their
lab notebook at the end of the semester to be graded for completion.

1To help students prepare for labs by pre-reading the instructions, static versions of most of the online content is
included also in this manual.
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To the Student

The SageMath labs are an indispensable part of the course. The main objective of the labs is
for you to engage with the concepts in a hands-on way, where you actively experiment with the
meaning and consequences of the core ideas of the course. Their goal is to help you learn how and
when to use the equations and techniques that you will see in class.

To prepare for each lab, you should:
• Make sure you have a copy of the blank electronic lab report. Your instructor will provide

this to you in advance as a fillable PDF file. Note that there are multiple versions of the
reports. Thus, it is important to use the lab report file provided by your instructor.
• Review your class notes on the material referenced in the lab. To do this efficiently, skim

through the version in this lab notebook2 and look for the key terms and results referenced
in it. For example, Lab #2 is about limits of functions and seems to be designed to build
up your intuition about the concept of a limit. Thus, you will want to review your class
notes on the definition of a limit.

As you work through each lab assignment, you will produce two separate outputs:
• You will save some of the code for the sample exercises (from the online version of the

lab) in your lab notebook. You may also have to use the lab notebook to save answers
to some of the online exercises that are not part of your lab report. As the semester
progresses, you will fill up the electronic version of your lab notebook, and after the
last lab you will submit the complete lab notebook for grading (consult the syllabus for
details).
• You will answer the questions in the lab report. The exercises in the lab report will be

based on exercises in the online version of the lab, but the examples will often be differ-
ent; the lab report versions may also ask additional questions or give specific instructions.
Typically, you will use the SageMath interface in the online version to perform a task
before you answer a question in the report. You will encounter three types of questions
that will each interact slightly differently with their online versions:

- questions that ask you to type in the result of a calculation: for each of those, the
electronic version of the lab report will provide a fillable field to type your answer.
You will need to use SageMath to perform a calculation and then will type your
answer in that field and save it.

- questions that ask for an answer based on work you completed: for each of those,
the electronic version of the lab will provide a larger blank box to type your answer.

2Alternatively, you may use the online version of the lab on the WordPress site.
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In general, such questions will not require you to perform any additional work on-
line, but instead you will analyze already completed work. Again, you must type
your answer in the provided box. Make sure to use complete sentences and proper
spelling, grammar and mathematical notation: those elements will be part of your
grade on such questions!

- questions that ask for a printout of the work you did online: for those, you will
need to produce a single sheet of paper with your name that displays the required
SageMath code and its output. The online versions of such questions are formatted
so that each goes on a separate sheet of paper when printed through a web browser.
Thus, for each question that asks you to “attach a printout,” you should use the Print
option of your browser to locate that sheet and print only it. See the screenshot below
for a sample how to do this in Google Chrome.

Once you have answered all the questions in your lab report, you must submit a physical
copy of your completed report for grading; unless your instructor tells you differently, it
will be due the next class day. The complete report will consist of a printed version of the
PDF file with all the answers (to the first two types of questions) typed in their respective
fields and with all the required printouts (for the third type of questions) attached—each
on a single page. For full credit, your lab reports must follow the above instructions and
all pages must be properly arranged and stapled.

Figure 0.1. Preparing to print SageMath output on page 3 using Google Chrome.
The name of the printer and the page to be printed are highlighted. The printer will
print only the page currently displayed. If you change the highlighted printer to the
“Save as PDF” option (or “Print to PDF” for other browsers), you may produce also
a single-page PDF file of your output.
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LAB 1

Review of Functions and Introduction to SageMath

Functions with names other than f and g

Function names do not have to be single letters (like f or g). In fact, sin(x), cos(x), tan(x), log(x),
and ln(x) are all examples of functions whose names are longer than a single letter. Many of these
common functions are built into mathematical software such as Mathematica and SageMath. Here
are some of the elementary built-in functions that you will be using often. When you use the
function in a SageMath computation cell, it should be entered exactly as it appears in the second
column.

Basic Function SageMath Syntax

|x| abs(x)
√

x sqrt(x)

ex, exp(x) exp(x) or eˆx

ln(x) = loge(x) log(x)

log(x) = log10(x) log(x,10)

logb(x) log(x,b)

arcsin(x) = sin−1(x) arcsin(x) or asin(x)

arccos(x) = cos−1(x) arccos(x) or acos(x)

arctan(x) = tan−1(x) arctan(x) or atan(x)

SageMath also predefines some standard constants, including:

π = 3.14159 . . . as pi;
e = 2.71828 . . . as e;
i =
√
−1 as I.

Function notation is not multiplication

SageMath uses the symbol ∗ to identify multiplication. It is important to remember that in
contrast to regular mathematical notation the multiplication symbol ∗ is not optional in SageMath:
that is, anytime you want to multiply two quantities you must use the symbol ∗. Thus, to enter the
expression 5x, you would write 5*x.

While this feature of SageMath can feel mildly annoying at first, there is one context where
it is rather helpful. Oftentimes, the use of parentheses in function notation makes people think
that they are multiplying. However, we must think about whether the symbols represent function
names or variables. For example, if f is the name of a function and x is a variable, then f (x)
is function notation that represents the output to the function f when the input is x; in this case,
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f (x) , f · x. On the other hand, the parentheses in the expression x(x) do indicate multiplica-
tion; in this case, x(x) = x · x = x2. SageMath’s convention regarding multiplication means that
this sort of ambiguity cannot occur in SageMath: in the above situation, f(x) represents f (x) in
SageMath, and x*x (or x*(x), or xˆ2) represents x2, but x(x) and f*(x) result in error messages.

Function plots in SageMath

Using SageMath, we can easily plot functions over specified intervals of the domain. For
example, to graph the function f (x) = x2 + 2x + 7 for −5 ≤ x ≤ 5, we enter the following
command:

plot(xˆ2+2*x+7, -5,5)

We can also graph multiple functions at once. For example, suppose we want to graph the
curves y = f (x) and y = f (x) + 10, both over the same range for x. To do so, it is convenient to
first define the function f (x) = x2 + 2x + 7 and then to have SageMath plot both f (x) and f (x) + 10
on the interval [−5, 5]. This is exactly what the following two lines of code accomplish: the first
defines a new function named f; and the second plots f (x) and f (x) + 10 on the interval [−5, 5].
Note that when we want to plot more than one function simultaneously, we list those functions
within a pair of parentheses, separated by commas: e.g., (f(x),f(x)+10) in the code below.

f(x) = xˆ2+2*x+7

plot((f(x),f(x)+10), -5,5)

We can specify the color of each plot as follows:
f(x) = xˆ2+2*x+7

plot((f(x),f(x)+10), -5,5, color=(’red’,’black’))

Exercises

Exercise 1.1. Type in the SageMath code that calculates each of the listed expressions.

log2(1024) Code:

sin(π) Code:

arctan(0.75) Code:

| − 2.3| Code:

3√
−1 Code:

√
7 Code:
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Exercise 1.2. The table below lists three mathematical expressions and incorrect SageMath
code that fails to evaluate those expressions. Fix the given SageMath code so that it evaluates the
respective expression correctly and type the corrected code in the last column of the table. You
may use the SageMath cell in the online version of the lab to test your code.

Expression Incorrect SageMath Code Corrected SageMath Code

log3(π) log[pi,3]

cos(1.2) cosine(1.2)

e|2
√

2−3| Expˆ|2sqrt(2)-3|

Exercise 1.3. Type in the SageMath code that calculates each of the listed expressions.

sin(π2) Code:

π2(sin(0.5π)) Code:

√
6e3 Code:

(2e)
√

e Code:

sin(cos(tan(0.3π))) Code:

Exercise 1.4. In the blank space below:
(a) Write a line of SageMath code that defines the function g(x) = ln(4 − 3 sin(x)).
(b) Write a line of SageMath code that plots the curves y = g(x) and y = g(x)+6 on the interval

[−3, 4], the first in red and the second in green.
(c) Write a sentence that describes the effect of adding 10 to the function’s output (that is,

answer Question 4 in the online version of the lab).
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Exercise 1.6. In the blank space below:
(a) Define the function f (x) = 23 sin(3x)−1 and evaluate the slope of the line through the points

(0, f (0)) and (1, f (1)).
(b) Draw a combined plot over the interval [−2, 2] of the graph y = f (x) and the line through

the points (0, f (0)) and (1, f (1)).
(c) Define a function m = m(b), b , 0, so that m(b) equals the slope of the line through the

points (0, f (0)) and (b, f (b)).

Notes on Lab 1.
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LAB 2

Limits

Informal approach to limits

When evaluating the limit of a function at c, you are determining the value of the function you
would expect at x = c based on the values it has when x is near c. The value of the function at
x = c is not needed to make this determination. In other words, the limit can be evaluated even if
the vertical line x = c is covered up to hide the function’s output at c. The limit is, in this sense, a
prediction at x = c based on the trend of nearby function values. To be precise with this prediction,
it is necessary to zoom in on the graph at the point of interest.

To explore this idea, several of the exercises below use animated SageMath plots, where a ver-
tical line has been covered up, and the value of the function at that point is unknown. A slider bar
allows you to zoom in and out on the part of the graph of a function near the covered point. You
can vary the zoom level between 1 and 40.

Evaluating limits in SageMath

SageMath has the ability to compute the limits of certain functions. For example, to evaluate

lim
x→1

x2 − 2x + 1
x − 1

you would type
limit((xˆ2-2*x+1)/(x-1), x=1)

You can also graph the function:
plot( (xˆ2-2*x+1)/(x-1), -1,4)

(Recall that the numbers −1 and 4 give the range of x-values to appear in the plot.)

Sometimes, you will want to put together several SageMath commands in an evaluation box
and see the outputs of several of them (as opposed to just the last one). This can be accomplished
by wrapping the computation whose output we want to see in a print() command. To see this in
action, try typing the commands below in a SageMath evaluation window:

print( limit( (xˆ2-2*x+1)/(x-1), x=1) )

plot( (xˆ2-2*x+1)/(x-1), -1,4)

Exercises

Exercise 2.2. If the values of the function f at inputs near c have a trend so that you can make
a reasonable prediction for the value at x = c, no matter what the zoom level is, then what can you
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conclude? In the blank space below, list the letter(s) of the correct conclusions.

A The limit lim
x→c

f (x) exists.
B The graph of f , zoomed in really close to x = c, must appear linear.
C The trend of values on the left side of x = c, and the trend on the right side, give the same

prediction.
D The prediction lim

x→c
f (x) must be the same as the actual value, f (c).

Exercise 2.5. For the function f (x) =
2x − 4
ln(x/2)

, use the above commands to evaluate lim
x→2

f (x)

and to graph this function over the range 1 ≤ x ≤ 3. Write the SageMath code you used in the
blank space below.

Notes on Lab 2.

6



LAB 3

Limits II

This lab considers the topic of limits again, but in a more mathematically rigorous manner. In
the previous lab, you thought of the statement

lim
x→c

f (x) = L

as a prediction of a y-value based on the trend of the values f (x) for inputs x near c. The goal here
is to make the idea of “trend of values” more precise. We want those values f (x) to “stay close” to
L when we “zoom near enough” to the point x = c. To gain a deeper understanding of what this
means, we need to quantify the notions “near enough” and “stay close.”

Zooming 2.0

To begin, we take a more in-depth look at the zooming process we used in Lab #2. Recall that
when we zoom in, we choose a zooming window (a rectangular piece of the plot), look at the graph
just in that window, and increase the resolution to look more closely. This window has a rightmost
x-value, xmax. If the window is centered at x = c, then the rightmost x-value minus c equals half
the width of the window—call that number δ:

δ = xmax − c.

We use the number δ to control the depth of zooming—the smaller δ, the deeper the zoom (or the
larger the zoom level).

Once we have set the width of the window around c (as determined by δ), the graph y = f (x)
will typically have a largest y-value and a smallest y-value over the chosen range for x—call them
ymax and ymin.1 In the animated SageMath plots, in the online versions of this lab and the last, the
height of the zooming windows is chosen so that the top edge of the rectangle is set to ymax and the
bottom edge is set to ymin. A sample of this is displayed on Figure 3.1.

Our exploration of the claim that lim
x→c

f (x) = L will be based on the difference ymax − ymin. Note
that if all the values f (x) on the zoomed graph are close to L, so are ymax and ymin, and the difference
ymax−ymin must be small. The first three exercises develop this idea: You are given a small number
τ > 0 (such as 0.01, 10−3, or 0.00012)—a threshold below which we consider ymax − ymin to be
small. Then you want to find a δ such that in the zooming window of half-width δ satisfies

ymax − ymin < τ.

This is a quantitative version of the statement: “the values f (x) stay close to each other when we
zoom near enough to x = c.”

1This may fail—ymax or ymin (or both) may not exist, but then the problem we are trying to solve is, in fact, easier.
For now, let us focus on the scenario where both ymax and ymin do exist.
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Figure 3.1. A sample zoom near c = 1: xmax ≈ 1.12, ymax ≈ 0.48, ymin ≈ 0.38.

Formal approach to limits

As explained in the first half of the lab, if we expect that lim
x→c

f (x) = L, then we want to be able
to make ymax − ymin less than any pre-determined threshold τ > 0, no matter how small, by setting
δ (the half-width of the window) small enough. Recall the formal definition of limit from §2.5 of
the textbook:

Definition. Let f (x) be defined for all x , c over an open interval (a, b) contain-
ing c. Let L be a real number. Then

lim
x→c

f (x) = L

means that: for every ε > 0, there exists a δ > 0 such that: whenever c−δ < x < c
or c < x < c + δ, one has L − ε < f (x) < L + ε.

This is another way to say what we earlier expressed in terms of the difference ymax − ymin: in this
definition, 2ε plays the role of the threshold τ in our earlier discussion, since ymax−ymin will be less
than 2ε. When checking this definition, we want to answer the following question: Is it possible to
select δ in terms of ε so that the values f (x) will always be between L− ε and L + ε when the input
x falls within the zooming window—that is, when c − δ < x < c + δ? Is this possible for all ε > 0?

The last few exercises in this lab investigate the above question. They deploy a slightly different
zooming SageMath demo that replaces the zoom level with a choice of δ, though not a direct one.
Instead, we get to select an ε in the range 0.005 ≤ ε ≤ 1 and then to select δ = kε for any choice of
k in the range 0.1 ≤ k ≤ 4. The demo also allows us to make a choice for the value L of the limit,
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and then sets the zooming window to the rectangle defined by the inequalities

c − δ ≤ x ≤ c + δ, L − ε ≤ y ≤ L + ε.

Some additional information is also displayed on the plots: the choices of ε and δ and the values
of ymin and ymax for the chosen zoom level are displayed on the large scale plot of y = f (x), and the
horizontal line y = L is drawn on the zoomed-in plot of y = f (x).

Exercises

Exercise 3.1. Use the SageMath cell in the online version of the lab with the function F1 and
zoom level set to 20 to answer the questions below.

(a) What is the rightmost x-value in the window? Use this to compute δ and record the value
below.

(b) What are the maximum and minimum y-values on the graph in the window? Use this to
compute ymax − ymin and record the value below.

δ =

ymax − ymin =

Exercise 3.4. Use the SageMath cell in the online version of the lab.

(a) Set L = 1 and ε = 0.25 and experiment with the value of k to find a δ for which at least one
of the inequalities

ymax < L + ε and ymin > L − ε (∗)

fails. Record the values you found.

δ =

ymax =

ymin =

(b) Still with L = 1 and ε = 0.25, experiment with the value of k to find a different δ for which
both inequalities (∗) hold. Record below the values you found.

δ =

ymax =

ymin =
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(c) Consider the results of parts (a) and (b). What changed in the relationship between the
graph y = f (x) and the viewing window that enabled us to satisfy inequalities (∗) in (b)?

Notes on Lab 3.
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LAB 4

Functions and Their Derivatives

In this lab you will practice distinguishing between applications of the function and applica-
tions of the derivative. Some questions will require you to know a little more about SageMath.

Using SageMath to calculate derivatives and to solve equations

SageMath can evaluate functions by entering two lines of code. The first line defines the
function and the second line specifies the output to evaluate. For example, to evaluate f (3) when
f (x) = 4x2 enter:
f(x)=4*xˆ2

f(3)

SageMath can also compute derivatives and evaluate these derivatives. For example, to deter-
mine the function rule for f ′ when f (x) = 4x2 you may enter the following:

f(x)=4*xˆ2

df(x)=diff(f,x)

df(x)

And a slight modification of the last SageMath code gives the value of the derivative at x = 3:
f(x)=4*xˆ2

df(x)=diff(f,x)

df(3)

Finally, you can use SageMath to solve equations. In SageMath (and many other software
packages), definitions are often made with an equal sign (’=’). For example, when you type
z(x) = xˆ2 + 1 into SageMath, this assigns z to be a function of x after that line.

In an equation, the equal sign has a different meaning; you are not assigning the left-hand side
to be the right-hand side for future reference, but are interested in which values of variables make
the sides equal. For this reason, SageMath needs to use something besides ’=’. The developers of
SageMath have chosen the double equal sign ’==’ to denote an equation. The online version of this
lab contains a SageMath computation cell that you can use to find the real roots of many equations:
it contains a cell labelled “Equation to solve” and by default displays the equation 2x = 7 and its
solution. If you replace the default equation by the valid SageMath code for another equation (say,
4x2 = 2), you can solve that other equation. (You will learn how to use the SageMath command
find_root() to solve equations in a later lab.) You are to use those SageMath cells to answer the
questions in Exercise 4.1 below.
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Figure 4.1. A sample plot of the tangent line at t = 1.

Understanding functions and their derivatives graphically

Recall that in lecture we studied the secant lines through a fixed point P(c, f (c)) on the graph
y = f (x) and a moving point Q(b, f (b)), where b , c. As we discussed in lecture, the limit of the
slopes of these secant lines, as b → c, is the slope of the tangent line at x = c. As this limit is also
equal to the derivative f ′(c), the tangent line at x = c is the line which:

(i) passes through the point (c, f (c));
(ii) has slope f ′(c).

The online version of the lab contains a couple of SageMath demonstrations. Each of them
displays the graph of a function (in blue) and its tangent line (in red) at a point x = c that you can
control via a slider bar (see the screenshot in Figure 4.1). You are to use those SageMath demon-
strations to answer the questions in the exercises in your lab report.
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Exercises

Exercise 4.1. In a medical experiment, the body weight in grams of a baby rat after t days
was f (t) = 4.96 + 4.8t + 0.17t2 − 0.0048t3. Use the SageMath computation cells below Exercise 1
in the online version of the lab to answer the questions below. Only use solutions that make sense
in the context of the experiment. Include brief explanations with your answers.

(a) Approximately how much did the rat weigh after 7 days?

(b) Approximately when did the rat’s weight reach 27 grams?

(c) Explain how the number of solutions you found in part (b) makes sense given the context.

(d) Approximately how fast was the rat gaining weight after 4 days?

Exercise 4.2. Exercise 2 in the online version of this lab contains an animated plot of a func-
tion y = f (t) that represents the temperature inside a house (in degrees Fahrenheit) as a function of
t, the number of hours elapsed since midnight. The animation allows you to select a time t = c and
to display the tangent line to the graph at t = c (see Figure 4.1 for a screenshot of the tangent line
at t = 1). Use that demonstration to answer the questions below. Include brief explanations with
your answers.

(a) What is the temperature of the house at 6 am?

(b) How fast is the temperature of the house changing at 11 am?
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(c) By how much did the temperature change between 6 am and 2 pm?

(d) What was the average rate at which the temperature changed from 6 am to 2 pm?

Notes on Lab 4.
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LAB 5

Implicit Differentiation

Implicitly defined curves

Consider the equation
6x + 3y = 2.

We can solve this equation to get y explicitly as a function of x—namely, y = 2
3 − 2x. On the other

hand, the equation
y4 − y − sin(2πx) = x3 + x

is much more difficult to solve for y. (Certainly, the math required to solve it goes beyond a basic
calculus course.) Even though we cannot express the relation represented by this equation as an
explicit function y = y(x), the equation still determines a curve in the plane—you can see its plot
in Figure 5.1.

This curve is made of points with coordinates (x0, y0) which have the property that setting
x = x0 and y = y0 in the equation gives left- and right-hand sides which are, in fact, equal. For
example, the curve contains the point (x0, y0) = (0, 1), since

14 − 1 − sin(2π ∗ 0) = 03 + 0.

The curve shown in Figure 5.1 is exactly the set of all such points (x0, y0), where −2 ≤ x0 ≤ 10 and
−5 ≤ y0 ≤ 5.

Figure 5.1. The curve y4 − y − sin(2πx) = x3 + x.
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Slopes of tangent lines on a curve

When we graph a differentiable function, we have a tangent line at a point on that graph.
Similarly, there will be tangent lines at points on implicitly defined curves. As we saw in lecture,
we can often assume that near a given point, the curve represents the graph of an implicit function
y = y(x). We can then use implicit differentiation to compute dy/dx, which represents the slope of
the tangent line to the curve.

Exercises 3 and 4 in the online version of the lab provide interactive tools to explore this idea.
Exercise 3 provides two interactive SageMath cells: the first that allows us to find points (x0, y0)
on the implicit curve by solving an equation, the second—to obtain the implicit derivative dy/dx
as a function of x and y. Exercise 4 provides an interactive SageMath cell that we can use to plot
an implicit curve and up to three other functions y = y(x) on the same plot. While any three graphs
can be superimposed on the plot of the implicit curve, Exercise 4 is focused on joint plots of the
original curve and its tangent lines at various points.

Exercises

Exercise 5.1. Determine which of the following points lie on the curve
1
2

y2 + y − sin(2πx) =
1
2

x3y + x.

For each part, type your answer and a supporting pair of evaluations in the box below.
(a) (x0, y0) = (−1, 1)
(b) (x0, y0) = (−1,−2)
(c) (x0, y0) = (2, 3 +

√
13)

(d) (x0, y0) = (2,−3 +
√

13)

Exercise 5.3. The SageMath interactive cell after Exercise 4 in the online version of this lab
is initialized to display the curve y3 − 16y = x3 + x. Use that plot and the two SageMath cells in
Exercise 3 in the online version of the lab to answer the following questions.

(a) By adjusting the equation to solve in the SageMath equation solver, find the points on the
curve where x = −2.
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(b) For the points you found in (a), determine the slope of the tangent line to the curve at those
points. (The SageMath cell below Exercise 3 labeled “Equation for curve” can be used
to compute an expression for dy/dx.) In the space below, list the slopes in the following
format:

“The slope of the tangent line at (∗∗, ∗∗) is ***.”

(c) While portions of the curve do appear to be close to horizontal, use the expression you
found for dy/dx to explain why there are no points on the curve where the tangent line is
horizontal.

Notes on Lab 5.

17





LAB 6

Extreme Values

One of the most important applications of the ideas of calculus is to optimization: trying to find
the maximum or minimum values of some function that we are interested in. In this lab we will
explore how to find these extreme values and some applications.

To find the extreme values of a function, we need to think about what happens to the function
at these points. Recall the following definitions from the lectures.

We say a function f has an absolute maximum on an interval I at x = c if
f (c) ≥ f (x) for all x ∈ I; we say a function f has an absolute minimum at x = c
if f (c) ≤ f (x) for all x ∈ I. If f has either an absolute maximum or an absolute
minimum on I at x = c, we say that f has an absolute extremum at x = c.

We say a function f has a local maximum at x = c if f (c) ≥ f (x) for all x near c
(though there may be larger values further away from x = c); we say a function
f has a local minimum at x = c if f (c) ≤ f (x) for all x near c. Finally, f has a
local extremum at x = c if it has either a local maximum or a local minimum at
that point.

Sometimes it isn’t clear from looking at the graph of a function where exactly the largest or
smallest values are. In these situations we need to compute the critical points first in order to find
the maximum or minimum value of the function.

To do this we are going to need a few tools from SageMath. The first is the diff(f,x)
command for differentiation, which we encountered in Lab #4. Recall that the following SageMath
code

f(x)=x+2*cos(2*x)

df(x)=diff(f,x)

defines df(x) to be the derivative function of f (x) = x + 2 cos(2x).
In addition, we will use SageMath’s find_root(f(x),a,b) command, which returns the

value of a root of the function f in the interval [a, b]. You can try this by copying the two lines
below into the SageMath cell in the online version of the lab.

f(x)=sin(x)

find_root(f(x),3,4)

Note that this command will only return one root in the interval, even if there are multiple roots.
Try changing the 3 to a −1 above. The function f (x) = sin(x) has two roots on the interval [−1, 4],
but the find root command only reports one of them.
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Exploring the distance between Earth andMars

You may have noticed over the years that Mars occasionally appears especially bright in the
night sky. The media certainly tends to make a fuss out of this when it happens. When this does
happen, it is because Earth and Mars become unusually close in their orbits around Sun. Because
Earth is closer to Sun than Mars, it orbits faster. As a result, the two planets are closest together
when Earth passes between Mars and Sun.

The last couple of exercises in this lab lead you through an exploration of a function modeling
the distance between Earth and Mars using calculus. Planets orbit approximately in ellipses, but
this is only an approximation. The equations below give the approximate (x, y, z) coordinates
of Earth and Mars relative to Sun in space over time, measured in days after January 1, 2000;
distances are in astronomic units (AU)1. The equations are messy, because orbits are complicated.
The important takeaway from these formulas is that xearth(t),yearth(t),zearth(t) are the
coordinates of Earth on day t, and xmars(t),ymars(t),zmars(t) are the coordinates of Mars
on the same day.

MC=0.093405

MO(t)=0.0091458*t+0.3246

MG(t)=MO(t)+MC*sin(MO(t))*(1+MC*cos(MO(t)))

MH(t)=atan2((0.9956)*sin(MG(t)),(cos(MG(t))-MC))+5.0003

MF(t)=1.5236*sqrt(( cos(MG(t))-MC)ˆ2+((0.9956)*sin(MG(t)))ˆ2)

EC=0.016709

EO(t)=6.21419244 + 0.017202*t

EG(t)=EO(t)+EC*sin(EO(t))*(1+EC*cos(EO(t)))

EH(t)=atan2(0.99986*sin(EG(t)),cos(EG(t))-EC)+4.938241

EF(t)=-sqrt(1+ECˆ2*sin(EG(t))ˆ2+(-2*cos(EG(t))*EC+ECˆ2))

xearth(t) = EF(t)*cos(EH(t))

yearth(t) = EF(t)*sin(EH(t))

zearth(t) = 0

xmars(t) = MF(t)*(0.648685933*cos(MH(t))-0.761056213*sin(MH(t))*0.999478937)

ymars(t) = MF(t)*(0.761056213*cos(MH(t))+0.648685933*sin(MH(t))*0.999478937)

zmars(t) = MF(t)*(sin(MH(t))*0.032277747)

You will use the above formulas to define a function that approximates the distance, in AU,
between Earth and Mars, and use that function to estimate the dates during a given time period
when the two planets are at their closest and their furthest. At the end you will compare your
findings to the exact distances listed in Table 6.1 at the end of this lab.

1Recall from astronomy that 1AU, the “distance between Earth and Sun”, is approximately 93 million miles.
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Exercises

Exercise 6.1. Exercise 1 in the online version of this lab displays both the graph of a function
f (x) on the left and its derivative f ′(x) on the right. A slider bar allows you to move a point along
the graph of each function. Explore the graph using the slider bar and use it to answer the questions
below.

(a) Find the values of x at which f has an absolute maximum or an absolute minimum over the
interval [0, 4]. (The horizontal line drawn on the graph of f may be helpful in determining
which point it is.)

(b) Find all the values of x at which f has a local extremum. (Remember the absolute maxima
and minima can be local maxima and minima as well.)

(c) For each local extremum, find the value of the derivative at that point. If the derivative does
not exist, write DNE.

Exercise 6.2. Let f be a continuous function defined on a closed bounded interval [a, b].
Recall that x = c is called a critical point of f if either f ′(c) = 0 or f ′(c) does not exist. For each
of the following statements, determine whether it is true or false. Note that to be true, a statement
must be true always, but to be false, it suffices to fail just once. If a statement is false, provide a
counterexample for that demonstrates that the statement is false.
[Hint. Some counterexamples may be found in the function from Exercise 1.]

(a) If x = c is a local extremum of f , then x = c is a critical point of f .

(b) If f ′(c) = 0 then x = c is either a local minimum or a local maximum of f .

(c) If f ′(c) does not exist then x = c is either a local minimum or a local maximum of f .
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(d) The absolute extrema of f on [a, b] are always at one end of the interval, x = a or x = b.

(e) The absolute extrema of f on [a, b] are never at one end of the interval, x = a or x = b.

(f) The absolute maximum of f on [a, b] can always be found by computing f (x) at every
critical point as well as the endpoints of the interval and then taking the point where f (x)
was largest.

(g) If x = c is a critical point of f ′, then x = c is also a critical point of f .

Exercise 6.3. The function f (x) = x+2 cos(2x) has three roots. Use the SageMath evaluation
cell above Exercise 3 in the online version of this lab to produce a plot of the graph y = f (x) and
to identify three intervals that contain those three roots. Then use the find_root() command to
find all three roots. When finished, save your code in the space below. Note that you will need to
run the find_root() command three times, changing the interval in which you ask it to search
each time. Use the print() command to make sure that SageMath displays the results of the
calculations of all three roots!
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Notes on Lab 6.

Table 6.1. Closest approaches of Mars to Earth since January 1, 2000.

Date of Closest Approach

Year Month Day Distance Days since
(AU) 01/01/2000

2001 6 21 0.45017 537.9562
2003 8 27 0.37272 1334.4111
2005 10 30 0.46406 2129.1431
2007 12 18 0.58935 2908.9910
2010 1 27 0.66398 3679.7931
2012 3 5 0.67368 4447.7090
2014 4 14 0.61756 5217.5375
2016 5 30 0.50321 5994.9000
2018 7 31 0.38496 6786.3271
2020 10 6 0.41492 7584.5965
2022 12 1 0.54447 8370.0958
2025 1 12 0.64228 9143.5681
2027 2 20 0.67792 9912.0097
2029 3 29 0.64722 10680.5389
2031 5 12 0.55336 11454.1597
2033 7 5 0.42302 12239.4715
2035 9 11 0.38041 13037.5979
2037 11 11 0.49358 13829.3333
2039 12 28 0.61092 14606.6160
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LAB 7

Newton’s Method

Newton’s method is a way to find the approximate value of a root of a function f : the value of
x where the function’s graph intersects the x-axis. In other words, this method gives an approxima-
tion to a solution x∗ of the equation f (x) = 0. In general, the method starts with an initial guess x0

for the unknown exact solution x∗ and finds a list of increasingly better approximations x1, x2, . . .
to x∗.

Figure 7.1. The graph y = ex − 2x2.

We will illustrate this method for the function f (x) = ex − 2x2, which has the graph depicted
on Figure 7.1 above. We want to approximate the left-most root, starting at a point somewhat near
it. To begin, let us choose x0 = −2.2. This choice and the nearby root can be seen in Figure 7.2,
where we have zoomed closer on the graph. The basic idea behind Newton’s method is that when
x0 is near x∗ the tangent line to the graph y = f (x) at x = x0 will be very close to the actual graph.
The x-intercept of the tangent line will be close to the x-intercept of the graph—that is, to the
unknown root x∗. Thus, Newton’s method determines x1 as the x intercept of the tangent line at x0.
The method then recycles the same idea: once we have x1, we calculate x2 as the x-intercept of the
tangent line to y = f (x) at x = x1, and so on. The first two steps in this process for our example are
shown on the next figure. Each red slanted line segment in the figure is part of the tangent line to
y = f (x) at some xk. We get the next approximation xk+1 by taking where the tangent line intersects
the x-axis. In this case, as k increases, each term xk becomes a better approximation to the root x∗.
Clearly, we could continue with x3, x4, . . . for even better approximations. This idea is summarized
by the following algorithm.
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Figure 7.2. Two iterations of Newton’s method for ex − 2x2 = 0.

A Step of Newton’s Method:

To obtain xk+1 from xk:
1. Find the numerical value of m = f ′(xk), the derivative of f at the point xk.
2. Using this slope, find the equation of the tangent line y = mx + b to y =

f (x) through the point (xk, f (xk)). (Note that the slope m was determined in
Step 1, so now we just need to find the intercept b.)

3. Using these values of m and b, find the value of x where the line y = mx + b
intersects the x-axis. This is the value of the next approximation xk+1.

Recall that the equation of the tangent line to y = f (x) at a point x = a is

y = f (a) + f ′(a)(x − a).

When f ′(a) , 0, this straight line intersects the x-axis at

x = a −
f (a)
f ′(a)

.

When we apply this to a = xk, we conclude that given a k-th Newton iterate xk, with f ′(xk) , 0,
we can obtain xk+1 by the formula

xk+1 = xk −
f (xk)
f ′(xk)

.

Now that we understand the method, we may use SageMath to speed up calculations. The
SageMath demo in the online version of the lab allows you to input a function and a starting point
x0 that you want to use Newton’s method on. By changing xmin and xmax you can change the part
of the graph you see. You can control the number of approximations n computed using the slider
bar. You should experiment briefly with it before proceeding with the lab assignment.
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Exercises

Exercise 7.1. Let f (x) = ex−2x2 and x0 = −2.2. Use the SageMath evaluation cell above Ex-
ercise 1 in the online version of the lab to perform the following calculations required to determine
the values of x1 and x2 in Figure 7.2. Save your code in the space below.

(a) Find the slope of the tangent line to the graph at x = x0.
(b) Use the slope you found in (a) to find the equation of the tangent line to y = f (x) at x = x0.
(c) Determine the value of x where the tangent line you found in (b) intersects the x-axis. This

is the value of x1.
(d) Starting with x1 instead of x0, repeat the steps in parts (a)-(c) to find the value of x2.

Notes on Lab 7.
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LAB 8

Riemann Sums

Approximating areas with Riemann sums

In this lab, we will explore how to approximate the area of a bounded region R, like the shaded
blue region in Figure 8.1 below. One way to do this is to use rectangles to approximate the area of
R. When we use the area of rectangles to approximate the area of a bounded region we compute
what is called a Riemann sum. To compute a Riemann sum, we follow the following algorithm:

1. Partition the interval [a, b] into n subintervals of equal width, ∆x = b−a
n .

2. Generate n rectangles of equal widths ∆x.
3. The height of each rectangle is determined by a value of the function over that subinterval.

We can use the value of the function at the left endpoint of the subinterval, at the midpoint
of the subinterval, at the right endpoint of the subinterval, or at a random x value in that
subinterval. We call these values of x sample points.

4. Put together, the rectangles form a polygon whose area approximates the area of R.

For example, we can approximate the area of the region bounded by f (x) = 3x2 + 2, the
horizontal axis, and the lines x = 0 and x = 2 with 4 rectangles. Then each rectangle would have a

Figure 8.1. The region below the curve y = 3x2 + 2.
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Figure 8.2. A left Riemann sum with four rectangles approximating the area below
the curve y = 3x2 + 2.

width of ∆x = 2−0
4 = 0.5. Such an approximation based on the values at the left endpoints is shown

on Figure 8.2. We can use SageMath to help us compute a left Riemann sum by adding together
the area of each rectangle.

f(x)=3*xˆ2+2

f(0)*(0.5)+f(0.5)*(0.5)+f(1)*(0.5)+f(1.5)*(0.5)

Limits of Riemann sums

To get better approximations to different areas, you will experiment with different choices for
the number and locations of the sample points. In your experiments, you will use an interactive
SageMath demonstration in the online version of the lab that allows you to select: the function f
whose graph bounds the region R from above, the interval [a, b] that bounds R from below, the
number n of subintervals that we subdivide [a, b] into, and a rule for the sample points. There are
four possible rules you can choose from:

- the sample point is always the left endpoint of the subinterval: these lead to “left Riemann
sums”;

- the sample point is always the right endpoint of the subinterval: these lead to “right Rie-
mann sums”;

- the sample point is always the midpoint of the subinterval;
- the sample point in each subinterval is chosen at random within that subinterval.

The demonstration provides also a button to regenerate the chosen Riemann sum. In the case of
a Riemann sum with randomly chosen sample points, this button reselects the sample points and
generates a different randomized Riemann sum based on the same partition of [a, b].
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Exercises

Exercise 8.1. In the space below, write SageMath commands to evaluate the Riemann sum
for f (x) = 3x2 + 2 on [0, 2] with 5 rectangles using right-hand endpoints. Record your approxima-
tion in your lab notebook. State explicitly the value of ∆x in this example.

Exercise 8.5. Let f (x) = 3x2 + 2 and answer the following questions.
(a) Find the antiderivative g of f : that is, find a function g such that g′(x) = f (x) for all x in

the given interval [a, b]. In the space below, write SageMath code that checks that your
choice for g has the desired property. (Recall that SageMath’s command diff(func, x)
computes the derivative func′(x).)

(b) Use the SageMath evaluation cell in the online version of the lab to evaluate g(a), g(b) and
g(b) − g(a). Record those values below. (Use SageMath’s command print() to display
the results of multiple computations.)

Exercise 8.6. Based on all the evidence collected thoughout the lab: How does the data
recorded in part (b) of Exercise 5 relate to the values of the limits recorder in part (b) of Exercise 3
of the online version of the lab?
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Notes on Lab 8.
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