
Introduction to Software Testing
Edition 2

Paul Ammann and Jeff Offutt

Solutions to Exercises

Student Version

May 28, 2020

Copyright Ammann & Offutt, 2014-20xx, all rights reserved.

2

Tell me and I may forget. Show me and I may remember. Involve me and I will understand

– Chinese proverb

Introductory Note

This document contains the work-in-progress solutions for the second edition of the text. The
goal is to keep the solution manuals synchronized with the textbook so that there are no “TBD”
solutions, as persisted in the first edition for many years.

We distinguish between “student solutions” and “instructor only” for the convenience of both.
Students can work homeworks then check their own answers. Instructors can assign homeworks
with some confidence that students will do their own work instead of looking up the answer in the
manual.

3

Chapter 1

Exercises, Chapter 1

1. What are some factors that would help a development organization move from Beizer’s testing
level 2 (testing is to show errors) to testing level 4 (a mental discipline that increases quality)?

Instructor Solution Only

2. What is the difference between software fault and software failure?

Instructor Solution Only

3. What do we mean by “level 3 thinking is that the purpose of testing is to reduce risk?” What
risk? Can we reduce the risk to zero?

Instructor Solution Only

4

4. The following exercise is intended to encourage you to think of testing in a more rigorous
way than you may be used to. The exercise also hints at the strong relationship between
specification clarity, faults, and test cases.

(a) Write a Java method with the signature
public static Vector union (Vector a, Vector b)

The method should return a Vector of objects that are in either of the two argument
Vectors.

Instructor Solution Only

5

(b) Upon reflection, you may discover a variety of defects and ambiguities in the given
assignment. In other words, ample opportunities for faults exist. Describe as many
possible faults as you can. (Note: Vector is a Java Collection class. If you are using
another language, interpret Vector as a list.)

Instructor Solution Only
(c) Create a set of test cases that you think would have a reasonable chance of revealing

the faults you identified above. Document a rationale for each test in your test set. If
possible, characterize all of your rationales in some concise summary. Run your tests
against your implementation.

Instructor Solution Only
(d) Rewrite the method signature to be precise enough to clarify the defects and ambiguities

identified earlier. You might wish to illustrate your specification with examples drawn
from your test cases.

Instructor Solution Only

6

5. Below are four faulty programs. Each includes test inputs that result in failure. Answer the
following questions about each program.

/** /**

* Find last index of element * Find last index of zero

* *

* @param x array to search * @param x array to search

* @param y value to look for *

* @return last index of y in x; -1 if absent * @return last index of 0 in x; -1 if absent

* @throws NullPointerException if x is null * @throws NullPointerException if x is null

*/ */

public int findLast (int[] x, int y) public static int lastZero (int[] x)

{ {

for (int i=x.length-1; i > 0; i--) for (int i = 0; i < x.length; i++)

{ {

if (x[i] == y) if (x[i] == 0)

{ {

return i; return i;

} }

} }

return -1; return -1;

} }

// test: x = [2, 3, 5]; y = 2; Expected = 0 // test: x = [0, 1, 0]; Expected = 2

// Book website: FindLast.java // Book website: LastZero.java

// Book website: FindLastTest.java // Book website: LastZeroTest.java

/** /**

* Count positive elements * Count odd or postive elements

* *

* @param x array to search * @param x array to search

* @return count of positive elements in x * @return count of odd/positive values in x

* @throws NullPointerException if x is null * @throws NullPointerException if x is null

*/ */

public int countPositive (int[] x) public static int oddOrPos(int[] x)

{ {

int count = 0; int count = 0;

for (int i=0; i < x.length; i++) for (int i = 0; i < x.length; i++)

{ {

if (x[i] >= 0) if (x[i]%2 == 1 || x[i] > 0)

{ {

count++; count++;

} }

} }

return count; return count;

} }

// test: x = [-4, 2, 0, 2]; Expcted = 2 // test: x = [-3, -2, 0, 1, 4]; Expected = 3

// Book website: CountPositive.java // Book website: OddOrPos.java

// Book website: CountPositiveTest.java // Book website: OddOrPosTest.java

(a) Explain what is wrong with the given code. Describe the fault precisely by proposing
a modification to the code.

(b) If possible, give a test case that does not execute the fault. If not, briefly explain why
not.

(c) If possible, give a test case that executes the fault, but does not result in an error state.
If not, briefly explain why not.

(d) If possible give a test case that results in an error state, but not a failure. Hint: Don’t
forget about the program counter. If not, briefly explain why not.

(e) For the given test case, describe the first error state. Be sure to describe the complete
state.

7

(f) Implement your repair and verify that the given test now produces the expected output.
Submit a screen printout or other evidence that your new program works.

8

findLast()

Instructor Solution Only

9

lastZero()

Solution:
This problem brings up a subtle issue with respect to faults and failures: there are always
multiple ways to fix a fault. Which states are error states depends on which alternate pro-
gram is chosen as “correct”. While this may sound mysterious, it isn’t. In fact, any time a
programmer uses a debugger and decides that a variable has the “wrong” value, she is im-
plicitly also choosing alternate code. We illustrate this point by giving two answers for part
(a) below (v1 and v2), and then carrying both versions through the subsequent parts of the
answer. Note how the answers to the sub-questions differ for solution v1 and solution v2.

Instructor note: This exercise can lead to a very interesting in-class discussion, with deep
insights into the location-based fault model. Ultimately, the model’s foundations are tradi-
tional program verification as introduced by Hoare and Dijkstra. Specifically, code is just
code. It can’t be “right” or “wrong” until one assigns (or derives) expected behaviors to it
with preconditions and postconditions. No one ever does this formally in practice, but every
programmer does this informally every time she identifies code as faulty. This discussion is
clearly beyond the scope of this text.

(a) The incorrect behavior is that the method returns the index of the first occurrence of
0, not the last. The faulty version of the method starts at the beginning and searches
forward until it finds a 0, then returns its index. There are many possible ways to fix
lastZero(); we describe two here. One is to invert the loop so that we search from
high to low (version v1 below). Another (version v2) is to keep searching the entire
array, even after finding the 0, and storing the most recent index found until the search
is finished. Solution v1 only requires changing the for-loop statement, and is more
efficient since only part of the array may need to be searched. Solution v2 requires
three separate changes and always requires searching the entire array. Both solutions
are reasonable.

v1: The for-loop is backwards. It starts from the beginning and returns the index of the
first 0 found. It should start at the end and count down. The proposed repair is:

for (int i=x.length-1; i >= 0; i--) {
v2: The statement inside the loop returns the index the first time it is reached. The
loop should continue until the last occurrence of 0 is found. To do this requires an
additional variable. The proposed repair is:

int index = -1; // Added before the loop

index = i; // Replaces return statement inside the loop body

return index; // Replaces return statement after the loop

(b) v1: All inputs start the loop, so all inputs execute the fault–even the null input.

v2: All inputs “execute” the missing initialization added before the loop. Hence, all
inputs execute the fault.

(c) v1: All inputs (except one - see below) result in an error state.

If x is null, execution continues beyond the initialization of i in the for-loop in the faulty
program. The exception isn’t raised until the loop predicate is evaluated. In the repaired

10

version, the exception is raised during the initialization of i. Hence, the faulty program
has an extra state in its execution, and that extra state is an error state.

If the loop is executed zero or one times, high-to-low and low-to-high evaluation are
the same. However, the last value for variable i is -1 in the correct code, but 1 in the
original code. Since variable i has the wrong value the state clearly meets the definition
of an error state. This is a fairly subtle point; the loop predicate evaluates correctly to
false, and the variable i immediately goes out of scope. (Thanks to Yasmine Badr who
relayed this point from an anonymous student.) The one exception to this analysis is
when x has the value [0]. In this case the program executes the return i; statement,
and hence i never takes the value -1. That is, there is no infection for an input that is
an array with one entry that is zero. (Thanks to Dat Phan for correcting the solution
on this point.)

v2: All inputs result in an error state, even the null value for x. The reason is the
difference between the second state in the original program and the second state in the
proposed repair. To make this specific, consider an execution with an arbitrary value of
x.

Second State Original: x = ...
i = 0
PC = just after i= 0;

Second State Repair: x = ...
index = -1
PC = just before the for loop

Two points merit notice: First, the missing code means that there is at least one state
variable missing in the execution of the original program. Hence, all states after the
missing code are, by definition, error states. Second, once the variable index is in-
troduced, the states of the two programs are no longer defined by the same variables.
Again, this means that the states after the missing code are, by definition, error states.

(d) v1: Even though (almost) all of the executions contain error states, the program does
return the correct result in many cases. For example:

Input: x = [1, 0, 3]
Expected Output: 1
Actual Output: 1

v2: As noted in part (c) above, all executions contain error states. But the faulty code
still computes the correct outputs in cases such as the one listed above in the solution
for v1.

(e) v1: The first error state is when index i has the value 0 when it should have a value
at the end of the array, namely x.length-1. 0 and x.length-1 are different unless x

contains exactly one value. Hence, the first error state is encountered immediately after
the initialization of i in the for-statement.

11

Input: x = [0, 1, 0]
Expected Output: 2
Actual Output: 0
First Error State: x = [0, 1, 0]

i = 0
PC = just after i= 0;

v2: As noted in part (c) above, the first error state occurs immediately after the missing
code is “executed.”

12

countPositive()

Instructor Solution Only

13

oddOrPos()

Solution:

(a) The if-test needs to take account of negative values (positive odd numbers are taken care
of by the second test):
if (x[i]%2 == -1 || x[i] > 0)

(b) x must be either null or empty. All other inputs result in the fault being executed. We
give the empty case here.

Input: x = []
Expected Output: 0
Actual Output: 0

(c) Any nonempty x with only non-negative elements works, because the first part of the
compound if-test is not necessary unless the value is negative.

Input: x = [1, 2, 3]
Expected Output: 3
Actual Output: 3

(d) For this particular program, every input that results in error also results in failure. The
reason is that error states are not repairable by subsequent processing. If there is a
negative value in x, all subsequent states (after processing the negative value) will be
error states no matter what else is in x.

(e) Input: x = [-3, -2, 0, 1, 4]
Expected Output: 3
Actual Output: 2
First Error State:
x = [-3, -2, 0, 1, 4]
i = 0;
count = 0;
PC = at end of if statement, instead of just before count++

Thanks to Jim Bowring for correcting this solution. Also thanks to Farida Sabry for pointing
out that negative even integers are also possible in the solution to part (c).

Also, note that this solution depends on treating the PC as pointing to the entire predicate
x[i]%2 == -1 || x[i] > 0 rather than to the individual clauses in this predicate. If you
choose to consider states where the PC is pointing to the individual clauses in the predicate,
then you can indeed get an infection without a failure in part (d). The reason is that for
an odd positive input the erroneous first clause, x[i]%== 1, returns true. Hence the if

short-circuit evaluation terminates, rather than evaluating the x[i]>0 clause, as the correct
program would. Bottom line: It’s difficult to analyze errors when the the PC has the wrong
value!

14

6. Answer question (a) or (b), but not both, depending on your background.

(a) If you do, or have, worked for a software development company, what level of test
maturity do you think the company worked at? (0: testing=debugging, 1: testing
shows correctness, 2: testing shows the program doesn’t work, 3: testing reduces risk,
4: testing is a mental discipline about quality).

Solution:
There is no “correct” solution for this exercise. The goal is to get students to reflect on
the technical culture with respect to testing at their place of work.

(b) If you have never worked for a software development company, what level of test matu-
rity do you think that you have? (0: testing=debugging, 1: testing shows correctness,
2: testing shows the program doesn’t work, 3: testing reduces risk, 4: testing is a mental
discipline about quality).

Solution:
Again, there is no “correct” solution for this exercise. The goal is to get students to
reflect on the personal level technical competence with respect to testing.

15

7. Consider the following three example classes. These are OO faults taken from Joshua Bloch’s
Effective Java, Second Edition. Answer the following questions about each.

class Vehicle implements Cloneable

{

private int x;

public Vehicle (int y) { x = y;}

public Object clone()

{

Object result = new Vehicle (this.x);

// Location "A"

return result;

}

// other methods omitted

}

class Truck extends Vehicle

{

private int y;

public Truck (int z) { super (z); y = z;}

public Object clone()

{

Object result = super.clone();

// Location "B"

((Truck) result).y = this.y; // throws ClassCastException

return result;

}

// other methods omitted

}

// Test: Truck suv = new Truck (4); Truck co = suv.clone()

// Expected: suv.x = co.x; suv.getClass() = co.getClass()

Note: Revelant to Bloch, Item 11 page 54.

Book website: Vehicle.java, Truck.java, CloneTest.java

public class BigDecimalTest

{

BigDecimal x = new BigDecimal ("1.0");

BigDecimal y = new BigDecimal ("1.00");

// Fact: !x.equals (y), but x.compareTo (y) == 0

Set <BigDecimal> BigDecimalTree = new TreeSet <BigDecimal> ();

BigDecimalTree.add (x);

BigDecimalTree.add (y);

// TreeSet uses compareTo(), so BigDecimalTree now has 1 element

Set <BigDecimal> BigDecimalHash = new HashSet <BigDecimal> ();

BigDecimalHash.add (x);

BigDecimalHash.add (y);

// HashSet uses equals(), so BigDecimalHash now has 2 elements

}

// Test: System.out.println ("BigDecimalTree = " + BigDecimalTree);

// System.out.println ("BigDecimalHash = " + BigDecimalHash);

// Expected: BigDecimalTree = 1; BigDecimalHash = 1

// See Java Doc for add() in Set Interface

// The problem is that in BigDecimal, equals() and compareTo()

// are inconsistent. Let’s suppose we decide that compareTo() is correct,

// and that equals()is faulty.

Note: Revelant to Bloch, Item 12 page 62.

Book website: BigDecimalTest.java

16

class Point

{

private int x; private int y;

public Point (int x, int y) { this.x=x; this.y=y; }

@Override public boolean equals (Object o)

{

// Location A

if (!(o instanceof Point)) return false;

Point p = (Point) o;

return (p.x == this.x) && (p.y == this.y);

}

}

class ColorPoint extends Point

{

private Color color;

// Fault: Superclass instantiable; subclass state extended

public ColorPoint (int x, int y, Color color)

{

super (x,y);

this.color=color;

}

@Override public boolean equals (Object o)

{

// Location B

if (!(o instanceof ColorPoint)) return false;

ColorPoint cp = (ColorPoint) o;

return (super.equals(cp) && (cp.color == this.color));

}

// Tests:

Point p = new Point (1,2);

ColorPoint cp1 = new ColorPoint (1,2,RED);

ColorPoint cp2 = new ColorPoint (1,2,BLUE);

p.equals (cp1); // Test 1: Result = true;

cp1.equals (p); // Test 2: Result = false;

cp1.equals (cp2); // Test 3: Result = false;

// Expected: p.equals (cp1) = true; cp1.equals (p) = true,

// cp1.equals (cp2) = false

Note: Relevant to Bloch, Item 17 page 87.

Book website: Point.java, ColorPoint.java, PointTest.java

(a) Explain what is wrong with the given code. Describe the fault precisely by proposing
a modification to the code.

(b) If possible, give a test case that does not execute the fault. If not, briefly explain why
not.

(c) If possible, give a test case that executes the fault, but does not result in an error state.
If not, briefly explain why not.

(d) If possible give a test case that results in an error, but not a failure. If not, briefly
explain why not. Hint: Don’t forget about the program counter.

(e) In the given code, describe the first error state. Be sure to describe the complete state.
(f) Implement your repair and verify that the given test now produces the expected output.

Submit a screen printout or other evidence that your new program works.

17

clone()

Instructor Solution Only

18

compareTo() and equals() inconsistancy

Solution:

(a) As noted in the exercise, BigDecimal’s, equals() and compareTo() methods are in-
consistent. BigDecimal equals() requires the values to be equal in value and scale (2.0
is not equal to 2.00), while BigDecimal compareTo() only checks that the numbers are
equal in value, not scale (2.0 is equal to 2.00). In the given code, the Hashset add()

method uses BigDecimal equals() and BigDecimal hashCode() to evaluate elements.
BigDecimal Treeset add() uses BigDecimal compareTo() to evaluate elements.

There is a subtle point here, in that the BigDecimal hashCode() method is required to
be consistent with the BigDecimal equals() method. Hence, if we decide to change the
semantics of equals(), we are also required to redefine hashCode().

Bottom line: If we decide the BigDecimal equals() is faulty, we also must agree that
BigDecimal hashCode() is faulty.

The fault is executed during BigDecimalHash.add() calls, which always result in a call
to hashCode(), and sometimes result in a call to equals().

To formulate sensible answers to this problem, we have to make a decision about the
level of abstraction at which we define state. For the purpose of this exercise, we’ll
assume that we have access to the state represented by variables in the given code, but
do not have access to state internal to BigDecimal or the sets.

(b) All tests that involve calls to equals() and/or hashCode() execute the fault. In terms
of the given code, this means calls to certain HashSet methods.

(c) Here are two example test cases that execute the fault but don’t result an observable
error.

i. Adding elements that have the same value and scale:

Input: BigDecimal a = new BigDecimal(”5.0”);
BigDecimal b = new BigDecimal(”5.0”);
Set<BigDecimal>BDTree = new TreeSet <BigDecimal> ();
BDTree.add(a);
BDTree.add(b);
Set<BigDecimal>BDHash = new HashSet <BigDecimal> ();
BDHash.add(a);
BDHash.add(b);

Expected Output: System.out.println(BDTree); //[5.0]
System.out.println(BDHash); //[5.0]

Actual Output: System.out.println(BDTree); //[5.0]
System.out.println(BDHash); //[5.0]

ii. Adding different values:

Input: BigDecimal a = new BigDecimal(”6.0”);
BigDecimal b = new BigDecimal(”7.00”);
Set<BigDecimal>BDTree = new TreeSet <BigDecimal> ();
BDTree.add(a);

19

BDTree.add(b);
Set<BigDecimal>BDHash = new HashSet <BigDecimal> ();
BDHash.add(a);
BDHash.add(b);

Expected Output: System.out.println(BDTree); //[6.0, 7.00]
System.out.println(BDHash); //[6.0, 7.00]

Actual Output: System.out.println(BDTree); //[6.0, 7.00]
System.out.println(BDHash); //[6.0, 7.00]

(d) An error state in the given context means that a HashSet object contains an object it
should not, or does not contain an object it should. Hence, every error state results in
failure if we call an appropriate observer on the HashSet.

(e) When the PC is just past s.add(y), s now contains two values, 1.0 and 1.00.

(f) The only way to fix the fault is to change how equals() evaluates numbers for BigDecimal.
Since BigDecimal is a part of Java API, there is no way to do this without breaking
client code.

20

equals() inconsistency with inheritance

Solution:

(a) The equals() method in the subclass ColorPoint is not consistent with its superclass Point
equals() method. One of the aspects of the equals contract is symmetry of evaluation
between two objects. x.equals(y) should produce the same result as y.equals(x).
It is not possible to have a correctly implemented equals method in an instantiable sub-
class that contains an overriding equals method and more client visible state than the
instantiable superclass.

(b) All uses of equals() in Colorpoint would execute the fault.

(c) Create two ColorPoint objects and evalute the objects using their equals methods. The
fault would be executed, but since the classes are the same, there is no error state. Note
that the only time there is a problem is when both ColorPoint and Point objects exist
in the same computation.

Input: cp1.equals(cp2)
cp2.equals(cp1)

Expected Output: false, false
Actual Output: false, false

(d) Not possible in the given situation.

(e) When PC is after cp1.equals(p), the result is false and breaks the expected symmetry of
p.equals(cp1) result equaling cp1.equals(p) result.

(f) There is no way to fix the current class setup and maintain all of the following three
properities: symmetry, transitivity, and substitution principle. One way out of this
conundrum is to replace inheritance with composition (see Bloch for a defense of this
approach, Item 16 page 81). An alternative is to sacrifice the substitution principle. (See
Wagner’s Effective C# for a defense of this approach, and also Bloch for a critique.)

21

Chapter 2

Exercises, Chapter 2

1. How are faults and failures related to testing and debugging?

Solution:
Faults are problems in the code, failures are incorrect external events. Depending on which of
Beizer’s levels you are working in, testing is the process of trying to cause failures or to show
that they occur at an acceptable rate. In contrast, debugging is a diagnostic process where,
given a failure, an attempt is made to find the associated fault.

2. Answer question (a) or (b), but not both, depending on your background.

(a) If you do, or have, worked for a software development company, how much effort did your
testing / QA team put into each of the four test activities? (test design, automation,
execution, evaluation)

(b) If you have never worked for a software development company, which of the four test
activities do you think you are best qualified for? (test design, automation, execution,
evaluation)

Instructor Solution Only

22

Chapter 3

Exercises, Chapter 3

1. Why do testers automate tests? What are the limitations of automation?

Solution:
Automation can help in many areas, most often to relieve the tester from repetitive, me-
chanical tasks. Checking of testing criteria can be automated through instrumentation, which
allows a higher level of testing to be performed. Automation will always run into undecidable
problems, such as infeasible paths, test case generation, internal variables, etc. Automation
cannot help validate output or make creative decisions.

2. Give a one or two paragraph explanation for how the inheritance hierarchy can affect
controllability and observability.

Instructor Solution Only

3. Develop JUnit tests for the BoundedQueue class. A compilable version is available on the
book website in the file BoundedQueue.java. Make sure your tests check every method, but
we will not evaluate the quality of your test designs and do not expect you to satisfy any
test criteria. Turn in a printout of your JUnit tests and either a printout or a screen shot
showing the results of each test.

Instructor Solution Only

4. Delete the explict throw of NullPointerException in the Min program (figure 3.2). Verify
that the JUnit test for a list with a single null element now fails.

Solution:
There is no “answer” for this exercise; instead, the point is to delete the following line of code:

if (result == null) throw new NullPointerException ("Min.min");

and then observe the testForSoloNullElement() test fail.

5. The following JUnit test method for the sort() method has a non-syntactic flaw. Find the
flaw and describe it in terms of the RIPR model. Be as precise, specific, and concise as you
can. For full credit, you must use the terminology introduced in the book.

In the test method, names is an instance of an object that stores strings and has methods
add(), sort(), and getFirst(), which do exactly what you would expect from their names.
You can assume that the object names has been properly instantiated and the add() and
getFirst() methods have already been tested and work correctly.

@Test

public void testSort()

{

names.add ("Laura");

23

names.add ("Han");

names.add ("Alex");

names.add ("Ashley");

names.sort();

assertTrue ("Sort method", names.getFirst().equals ("Alex"));

}

Solution:
The assertion only checks a small part of the final state (the first element in the list). So if a
test causes a fault to infect, and then propagate to another part of the final state, the failure
will not be revealed. The test oracle needs to look at the entire list.

Thanks to Fardina Fathmiul Alum and Eshita Singh for correcting this solution.

6. Consider the following example class. PrimeNumbers has three methods. The first, compute-
Primes(), takes one integer input and computes that many prime numbers. iterator()

returns an Iterator that will iterate through the primes, and toString() returns a string
representation.

public class PrimeNumbers implements Iterable<Integer>

{

private List<Integer> primes = new ArrayList<Integer>();

public void computePrimes (int n)

{

int count = 1; // count of primes

int number = 2; // number tested for primeness

boolean isPrime; // is this number a prime

while (count <= n)

{

isPrime = true;

for (int divisor = 2; divisor <= number / 2; divisor++)

{

if (number % divisor == 0)

{

isPrime = false;

break; // for loop

}

}

if (isPrime && (number % 10 != 9)) // FAULT

{

primes.add (number);

count++;

}

number++;

}

}

@Override public Iterator<Integer> iterator()

{

return primes.iterator();

}

@Override public String toString()

{

return primes.toString();

}

}

24

computePrimes() has a fault that causes it not to include prime numbers whose last digit
is 9 (for example, it omits 19, 29, 59, 79, 89, 109, ...). If possible, describe five tests. You
can describe the tests as sequences of calls to the above methods, or briefly describe them in
words. Note that the last two tests require the test oracle to be described.

(a) A test that does not reach the fault

(b) A test that reaches the fault, but does not infect

(c) A test that infects the state, but does not propagate

(d) A test that propagates, but does not reveal

(e) A test that reveals the fault

If a test cannot be created, explain why.

Instructor Solution Only

7. Reconsider the PrimeNumbers class from the previous exercise. Normally, this problem is
solved with the Sieve of Eratosthenes. The change in algorithm changes the consequences of
the fault. Specifically, false positives are now possible in addition to false negatives. Recode
the algorithm to use the Sieve approach, but leave the fault. What is the first false positive,
and how many “primes” must a test case generate before encountering it? What does this
exercise show about the RIPR model?

Instructor Solution Only

8. Develop a set of data-driven JUnit tests for the Min program. Make your @Parameters

method produce both String and Integer values.

Instructor Solution Only

9. When overriding the equals() method, programmers are also required to override the
hashCode() method; otherwise clients cannot store instances of these objects in common
Collection structures such as HashSet. For example, the Point class from Chapter 1 is
defective in this regard.

(a) Demonstrate the problem with Point using a HashSet.

Solution:

Point p1 = new Point(1, 2);

Point p2 = new Point(1, 2); // note that p1.equals(p2)

Set<Point> s = new HashSet<Point>();

s.add(p1);

boolean b = s.contains(p2); // we really want b to be true!

While it possible that b is true, it is far more likely that the two Point objects hash to
different buckets, in which case b is false. Ouch!

25

(b) Write down the mathematical relationship required between equals() and hashCode().

Solution:
For a detailed explanation, see Bloch’s Effective Java, Second edition, Item 9. The
relationship is: if two objects are considered equal (as determined by the equals()

method), then they must have the same hash codes (as determined by the hashCode()

method). Note that the inverse is not true: it is perfectly fine for unequal objects to
share a hash code. See Bloch Item 9 for extensive guidance on implementing good hash
codes.

(c) Write a simple JUnit test to show that Point objects do not enjoy this property.

Solution:

@Test public void hashConsistentWithEquals() {
Point p1 = new Point(1,2);

Point p2 = new Point(1,2);

assertTrue("Hash codes must match", p1.hashCode() == p2.hashCode());

}

(d) Repair the Point class to fix the fault.

Solution:
Following Bloch’s recipe (again, Item 9):

@Override public int hashCode() {
int result = 17;

result = 31 * result + x;

result = 31 * result + y;

return result;

}

(e) Rewrite your JUnit test as an appropriate JUnit theory. Evaluate it with suitable
DataPoints.

Solution:

@Theory public void hashConsistentWithEqualsTheory(Object o1, Object o2) {
assumeTrue(o1 != null);

assumeTrue(o2 != null);

assumeTrue(o1.equals(o2));

assertTrue("Hash codes must match", o1.hashCode() == o2.hashCode());

}
@DataPoints public static Object[] objects = {

new Point(1,2), new Point(1,2), new Point(1,3), "ant", null

};

26

There are several things of note about this theory. First, to make the theory as general
as possible, and hence as widely useful as possible, the test engineer should always choose
parameter types that are close to the root of the type hierarchy as possible. Hence, the
parameters to the theory method are of type Object, and not of type Point. This is
appropriate because the equals() and hashCode() methods are defined in the Object

class. In other words, even though the motivation for this theory is Point objects,
the result applies to all Java objects! Second, the assumptions about non-null values
mean that this theory can be applied without worrying about whether the associated
DataPoints happen to contain null values. Third, this theory is evaluated over the
cross product of the set of five values in the DataPoints structure with itself. Of these
5*5=25 values, 5 do not pass the first precondition. Of the remaining 20, 4 do not pass
the second precondition. Of the remaing 16, 6 pass the third precondition. All 6 of these
satisfy the postcondition. (If you are not sure about these numbers, try it and see!)

10. Replace each occurrence of a set with a list in the JUnit theory removeThenAddDoesNot-

ChangeSet. Is the resulting theory valid or invalid? How many of the tests that pass the
precondition also pass the postcondition? Explain.

Solution:
See the Java class ListTheoryTest online. The resulting theory is definitely not valid because
order matters in lists. Hence the JUnit theory fails.

27

Chapter 4

Exercises, Chapter 4

1. Chapter 3 contained the program Calc.java. It is available on the program listings page on
the book website.

Calc currently implements one function: it adds two integers. Use test-driven design to
add additional functionality to subtract two integers, multiply two integers, and divide two
integers. First create a failing test for one of the new functionalities, modify the class until the
test passes, then perform any refactoring needed. Repeat until all of the required functionality
has been added to your new version of Calc, and all tests pass.

Remember that in TDD, the tests determine the requirements. This means you must encode
decisions such as whether the division method returns an integer or a floating point number
in automated tests before modifying the software.

Submit printouts of all tests, your final version of Calc, and a screen shot showing that
all tests pass. Most importantly, include a narrative describing each TDD test created, the
changes needed to make it pass, rnd any refactoring that was necessary.

Solution:
This is a “completion” exercise: the exact artifacts aren’t important. What is important is
going through the TDD process.

In our experience, the most common mistake students make is to create all, or several, tests at
one time. This violates the TDD process, and although it will work quite well for such a tiny
example, that kind of process doesn’t scale well to large programs. It is also, in our experience,
a common mistake made in industry, often by companies who then say “TDD doesn’t work.”
Another very common mistake in industry, by the way, is to skip refactoring. This quickly
puts the software into mainetenance debt, again causing the managers and engineers to say
“TDD doesn’t work.”

An interesting variation on this exercise would be to require the Calc to be modified to include
memory. That is, a value can be saved and then reused in calculations instead of simply
constants. This would require lots of refactoring. Most importantly, the methods should no
longer be static to avoid memory being shared amoing different uses of the class. That is, the
memory variables should be individual to each object, not to the entire class.

2. Set up a contiuous integration server. Include version control for both source code and tests,
and populate both with a simple example. Experiment with “breaking the build”, by either
introducing a fault into the source code or adding a failing test case. Restore the build.

Solution:
This is “completion” type exercise. There is no “right” answer; rather the point is to become
familiar with at least one tool. Note: This is a great exercise for introducing students to
how source code and tests are managed in practice at typical companies. At the time of this
writing, Jenkins is a popular CI server, and GitHub is a popular version management system.
But other tools are certainly available.

28

3. Most continuous integration systems offer far more than automated test execution. Extend
the prior exercise so that the continuous integration server uses additional verification tools
such as code coverage or a static analysis.

Solution:
Again, this is a “completion” type exercise, and hence has no “right” answer.

4. Find a refactoring in some large, existing system. Build tests that capture the behavior
relevant to that part of the system. Refactor, and then check that the tests still pass.

Solution:
Another “completion” type exercise. Often, the hard part for students is picking the source
code. One idea is to choose an open-source project. Another is to pick well-built and familar
code such as one of the classes in the Collection framework in java.util.

5. Repair a fault in an existing system. That is, find the code that needs to change and capture
the current behavior with tests. At least one of these tests must fail, thus demonstrating
that you found the fault. Repair the fault and check that all of your tests now pass.

Solution:
Yet another “completion” type exercise. Again, the hard part for many students is choosing
the source code. One trick that works well here is to intentionally place a fault in some
existing code and then proceed with the exercise.

29

Chapter 5

Exercises, Chapter 5

1. Suppose that coverage criterion C1 subsumes coverage criterion C2. Further suppose that
test set T1 satisfies C1 on program P and test set T2 satisfies C2, also on P .

(a) Does T1 necessarily satisfy C2? Explain.

Solution:
Yes. This follows directly from the definition of subsumption.

(b) Does T2 necessarily satisfy C1? Explain.

Solution:
No. There is no reason to expect test requirements generated by C1 to be satisfied by
T2.

(c) If P contains a fault, and T2 reveals the fault, T1 does not necessarily also reveal the
fault. Explain.

Instructor Solution Only

2. How else could we compare test criteria besides subsumption?

Instructor Solution Only

30

Chapter 6

Exercises, Section 6.1

1. Return to the example at the beginning of the chapter of the two characteristics “File F
sorted ascending” and “File F sorted descending.” Each characteristic has two blocks. Give
test case values for all four combinations of these two characteristics.

Solution:
We have four possibilities. Of course, many values could be used. We give simple strings
using commas to indicate line returns.

TT : cat
TF : cat, dog
FT : dog, cat
FF : dog, cat, possum

2. A tester defined three characteristics based on the input parameter car : Where Made,
Energy Source, and Size. The following partitionings for these characteristics have at
least two mistakes. Correct them.

Where Made

North America Europe Asia

Energy Source

gas electric hybrid

Size

2-door 4-door hatch-back

Solution:
Where Made is not complete. Add “other”

Size overlaps, a hatch-back could be 2-door or 4-door. Either add “2-door + hatch-back,”
and “4-door + hatch-back,” or create two new characteristics:
Side Doors: 2, 4
Hatch-back: yes, no

3. Answer the following questions for the method search() below:

public static int search (List list, Object element)

// Effects: if list or element is null throw NullPointerException

// else if element is in the list, return an index

// of element in the list; else return -1

// for example, search ([3,3,1], 3) = either 0 or 1

// search ([1,7,5], 2) = -1

Base your answer on the following characteristic partitioning:

Characteristic: Location of element in list

Block 1: element is first entry in list

Block 2: element is last entry in list

Block 3: element is in some position other than first or last

31

(a) “Location of element in list” fails the disjointness property. Give an example that
illustrates this.

Instructor Solution Only
(b) “Location of element in list” fails the completeness property. Give an example that

illustrates this.

Instructor Solution Only
(c) Supply one or more new partitions that capture the intent of “Location of element in

list” but do not suffer from completeness or disjointness problems.

Instructor Solution Only

4. Derive input space partitioning test inputs for the GenericStack class with the following
method signatures:

• public GenericStack ();

• public void push (Object X);

• public Object pop ();

• public boolean isEmpty ();

Assume the usual semantics for the GenericStack. Try to keep your partitioning simple and
choose a small number of partitions and blocks.

(a) List all of the input variables, including the state variables.
(b) Define characteristics of the input variables. Make sure you cover all input variables.

Instructor Solution Only
(c) Partition the characteristics into blocks.

Instructor Solution Only
(d) Define values for each block.

Instructor Solution Only

5. Consider the problem of searching for a pattern string in a subject string. One possible imple-
mentation with a specification is on the book website; PatternIndex.java. This particular
version has an incomplete specification–and a decent interface-based input domain model
singles out the problematic input! Assignment: find the the problematic input, complete the
specification, and revise the implementation to match the revised specification.

Solution:
The problem is what to do with empty patterns - an easy case for interface-based input domain
models, since the empty string is a standard special case for string types. As written, the
specification doesn’t address empty patterns at all – are they everywhere or nowhere?

Note that empty subjects are a different matter - the specification has a natural interpretation
for empty subjects in that patterns are never found in empty subjects. The JUnit tests in
PatternIndexTest.java address the case of the empty subject.

The implementation is not satisfactory as written, since the result is an exception complaining
about an out-of-bounds index, yet the caller isn’t supplying any indices.

32

One good solution is to amend the specification to explicitly reject empty patterns with the
exception mechanism:

@throws IllegalArgumentException if pattern is empty

For the implementation to match, it needs an explicit check for an empty pattern, along with
an explicit throws clause:

if (patternLen == 0) throw new IllegalArgumentException("PatternIndex.patternIndex");

Finally a test case should be added to PatternIndexTest.java that calls patternIndex()

with an empty pattern and looks for this exception.

As a forward pointer, the patternIndex() method is subject to significant scrutiny in the
graph testing chapter. Yet the resulting tests don’t uncover this anomaly.

33

Exercises, Section 6.2

1. Write down all 64 tests to satisfy the All Combinations (ACoC) criterion for the second
categorization of triang()’s inputs in Table 6.2. Use the values in Table 6.3.

Solution:
{(2, 2, 2), (2, 2, 1), (2, 2, 0), (2, 2,−1),
(2, 1, 2), (2, 1, 1), (2, 1, 0), (2, 1,−1),
(2, 0, 2), (2, 0, 1), (2, 0, 0), (2, 0,−1),
(2,−1, 2), (2,−1, 1), (2,−1, 0), (2,−1,−1),
(1, 2, 2), (1, 2, 1), (1, 2, 0), (1, 2,−1),
(1, 1, 2), (1, 1, 1), (1, 1, 0), (1, 1,−1),
(1, 0, 2), (1, 0, 1), (1, 0, 0), (1, 0,−1),
(1,−1, 2), (1,−1, 1), (1,−1, 0), (1,−1,−1),
(0, 2, 2), (0, 2, 1), (0, 2, 0), (0, 2,−1),
(0, 1, 2), (0, 1, 1), (0, 1, 0), (0, 1,−1),
(0, 0, 2), (0, 0, 1), (0, 0, 0), (0, 0,−1),
(0,−1, 2), (0,−1, 1), (0,−1, 0), (0,−1,−1),
(−1, 2, 2), (−1, 2, 1), (−1, 2, 0), (−1, 2,−1),
(−1, 1, 2), (−1, 1, 1), (−1, 1, 0), (−1, 1,−1),
(−1, 0, 2), (−1, 0, 1), (−1, 0, 0), (−1, 0,−1),
(−1,−1, 2), (−1,−1, 1), (−1,−1, 0), (−1,−1,−1)}

2. Write down all 16 tests to satisfy the Pair-Wise (PWC) criterion for the second categorization
of triang()’s inputs in Table 6.2. Use the values in Table 6.3.

Solution:
Note: Lots of possibilities here, as suggested by the ways in which pairs are chosen below.

{(2, 2, 2),
(2, 1, 1),
(2, 0, 0),
(2,−1,−1),
(1, 2, 1),
(1, 1, 2),
(1, 0,−1),
(1,−1, 0),
(0, 2, 0),
(0, 1,−1),
(0, 0, 2),
(0,−1, 1),
(−1, 2,−1),
(−1, 1, 0),
(−1, 0, 1),
(−1,−1, 2)}

3. Write down all 16 tests to satisfy the Multiple Base Choice Coverage (MBCC) for the second
categorization of triang()’s inputs in Table 6.2. Use the values in Table 6.3.

34

Solution:
The text suggests both ‘2’ and ‘1’ base choices for side 1. (Other sides still have 1 base choice
of ‘2’). This give two base tests: (2, 2, 2) and (1, 2, 2). According to the formula given in the
text, we get 2(base) + 4 + 6 + 6 = 18 tests. However, 2 of these are redundant, so the result
is 16. To clarify, we list all 18 tests, generated according to the formula:

{(2, 2, 2), //F irst base test

(0, 2, 2), (−1, 2, 2), //V ary first characteristic
(2, 1, 2), (2, 0, 2), (2,−1, 2), //V ary second characteristic
(2, 2, 1), (2, 2, 0), (2, 2,−1), //V ary third characteristic

{(1, 2, 2), //Second base test
(0, 2, 2), (−1, 2, 2), //V ary first characteristic
(1, 1, 2), (1, 0, 2), (1,−1, 2), //V ary second characteristic
(1, 2, 1), (1, 2, 0), (1, 2,−1), //V ary third characteristic
}
Here are the 16 nonredundant tests:

{(2, 2, 2),
(0, 2, 2), (−1, 2, 2),
(2, 1, 2), (2, 0, 2), (2,−1, 2),
(2, 2, 1), (2, 2, 0), (2, 2,−1),
(1, 2, 2),
(1, 1, 2), (1, 0, 2), (1,−1, 2),
(1, 2, 1), (1, 2, 0), (1, 2,−1)
}
Thanks to Richard Carver for correcting this solution.

4. Answer the following questions for the method intersection() below:

public Set intersection (Set s1, Set s2)

// Effects: If s1 or s2 is null throw NullPointerException

// else return a (non null) Set equal to the intersection

// of Sets s1 and s2

Characteristic: Validity of s1

- s1 = null

- s1 = {}

- s1 has at least one element

Characteristic: Relation between s1 and s2

- s1 and s2 represent the same set

- s1 is a subset of s2

- s2 is a subset of s1

- s1 and s2 do not have any elements in common

(a) Does the partition “Validity of s1” satisfy the completeness property? If not, give a
value for s1 that does not fit in any block.

Instructor Solution Only
(b) Does the partition “Validity of s1” satisfy the disjointness property? If not, give a value

for s1 that fits in more than one block.

35

Instructor Solution Only
(c) Does the partition “Relation between s1 and s2” satisfy the completeness property? If

not, give a pair of values for s1 and s2 that does not fit in any block.

Instructor Solution Only
(d) Does the partition “Relation between s1 and s2” satisfy the disjointness property? If

not, give a pair of values for s1 and s2 that fits in more than one block.

Instructor Solution Only
(e) If the “Base Choice” criterion were applied to the two partitions (exactly as written),

how many test requirements would result?

Instructor Solution Only

5. Use the following characteristics and blocks for the questions below.

Characteristics Block 1 Block 2 Block 3 Block 4

Value 1 < 0 0 > 0

Value 2 < 0 0 > 0

Operation + − × ÷

(a) Give tests to satisfy the Each Choice criterion.

Solution:

Four tests are needed.

V1 V2 Op

-2 -2 +

0 0 −
2 2 ×
2 2 ÷

(b) Give tests to satisfy the Base Choice criterion. Assume base choices are Value 1 = > 0,
Value 2 = > 0, and Operation = +.

Solution:
Eight tests are needed.

V1 V2 Op

2 2 +

-2 2 +

0 2 +

2 -2 +

2 0 +

2 2 -

2 2 ×
2 2 ÷

(c) How many tests are needed to satisfy the All Combinations criterion? (Do not list all
the tests!)

Solution:
3 * 3 * 4 = 36

(d) Give tests to satisfy the Pair-Wise Coverage criterion.

Solution:
Pairs: 7 + 7 + 7 + 4 + 4 + 4 = 33

36

Since each test can accommodate 3 pairs, at least 11 tests are needed. The best solution
involves one extra test, for a total of 12 tests:

V1 V2 Op

-2 -2 +

-2 0 -

-2 2 ×
2 -2 ÷
2 0 +

0 2 -

0 -2 ×
0 0 ÷
0 2 +

2 -2 -

2 0 ×
-2 2 ÷

Thanks to Kien Nguyen for correcting this solution.

6. Derive input space partitioning test inputs for the BoundedQueue class with the following
signature:

• public BoundedQueue (int capacity); // The maximum number of elements

• public void enQueue (Object X);

• public Object deQueue ();

• public boolean isEmpty ();

• public boolean isFull ();

Assume the usual semantics for a queue with a fixed, maximal capacity. Try to keep your
partitioning simple—choose a small number of partitions and blocks.

(a) List all of the input variables, including the state variables.

Instructor Solution Only
(b) Define characteristics of the input variables. Make sure you cover all input variables.

Instructor Solution Only
(c) Partition the characteristics into blocks. Designate one block in each partition as the

“Base” block.

Instructor Solution Only
(d) Define values for each block.

Instructor Solution Only
(e) Define a test set that satisfies Base Choice Coverage (BCC). Write your tests with the

values from the previous step. Be sure to include the test oracles.

Instructor Solution Only

37

7. Design an input domain model for the logic coverage web application on the book’s website.
That is, model the logic coverage web application using the input domain modeling technique.

(a) List all of the input variables, including the state variables.

Instructor Solution Only
(b) Define characteristics of the input variables. Make sure you cover all input variables.
(c) Partition the characteristics into blocks.
(d) Designate one block in each partition as the “Base” block.

Instructor Solution Only
(e) Define values for each block.

Instructor Solution Only
(f) Define a test set that satisfies Base Choice Coverage (BCC). Write your tests with the

values from the previous step. Be sure to include the test oracles.

Instructor Solution Only
(g) Automate your tests using the web test automation framework HttpUnit. Demonstrate

success by submitting the HttpUnit tests and a screen dump or output showing the
result of execution.
(Note to instructors: HttpUnit is based on JUnit and is quite similar. The
tests must include a URL and the framework issues the appropriate HTTP
request. We usually use this question as a non-required bonus, allowing
students to choose whether to learn HttpUnit on their own.)

38

Exercises, Section 6.4

1. The restriction on interleaving next() and remove() calls is quite complex. The JUnit tests
in IteratorTest.java only devote one test for this situation, which may not be enough.
Refine the input domain model with one or more additional characteristics to probe this
behavior, and implement these tests in JUnit.

Instructor Solution Only

2. (Challenging!) It is possible to modify an ArrayList without using the remove() method
and yet have a subsequent call to remove() fail to throw ConcurrentModificationException.
Develop a (failing!) JUnit test that exhibits this behavior.

Instructor Solution Only

39

Chapter 7

Exercises, Section 7.1

1. Give the sets N , N0, Nf , and E for the graph in Figure 7.2.

Solution:
N = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
N0 = {1, 2, 3}
Nf = {8, 9, 10}
E = {(1, 4), (1, 5), (2, 5), (3, 6), (3, 7), (4, 8), (5, 8), (5, 9),
(6, 2), (6, 10), (7, 10), (9, 6), }

Thanks to Aya Salah, Steven Dastvan, and Rich Dillon for correcting this solution.

2. Give a path that is not a test path in Figure 7.2.

Solution:
Obviously, there are many possibilities. [5, 9, 5, 10] is not a test path because it does not
start in an initial node. [2, 5, 9, 5] is not a test path because it does not end in a final node.

3. List all test paths in 7.2.

Solution:
There are an unbounded number of these. In particular, any path that visits the loop [2, 5, 9, 6]
can be extended indefinitely. We list some of the shorter test paths below. [1, 4, 8], [1, 5, 8],
[1, 5, 9], [1, 5, 9, 6, 2, 5, 9], [1, 5, 9, 6, 10], [2, 5, 9], [2, 5, 9, 6, 2, 5, 9], [2, 5, 9, 6, 10],
[3, 6, 10], [3, 6, 2, 5, 9], [3, 6, 2, 5, 9, 6, 2, 5, 9], [3, 7, 10].

4. In Figure 7.5, find test case inputs such that the corresponding test path visits edge (2, 4).

Solution:
As noted in the figure, input (a = 0, b = 1) works.

40

Exercises, Section 7.2.2

1. Redefine Edge Coverage in the standard way (see the discussion for Node Coverage).

Instructor Solution Only

2. Redefine Complete Path Coverage in the standard way (see the discussion for Node Coverage).

Instructor Solution Only

3. Subsumption has a significant weakness. Suppose criterion Cstrong subsumes criterion Cweak

and that test set Tstrong satisfies Cstrong and test set Tweak satisfies Cweak. It is not necessarily
the case that Tweak is a subset of Tstrong. It is also not necessarily the case that Tstrong reveals
a fault if Tweak reveals a fault. Explain these facts.

Instructor Solution Only

4. Answer questions a–d for the graph defined by the following sets:

• N = {1, 2, 3, 4}
• N0 = {1}
• Nf = {4}
• E = {(1, 2), (2, 3), (3, 2), (2, 4)}

(a) Draw the graph.

Solution:
See the graph tool at http: // www. cs. gmu. edu/ ~ offutt/ softwaretest/

(b) If possible, list test paths that achieve Node Coverage, but not Edge Coverage. If not
possible, explain why not.

Solution:
For this program, this is not possible. All test paths must begin at node 1, visit node
2, and, eventually, end at node 4. Any test path that visits node 3 also visits both edge
(2, 3) and edge (3, 2).

(c) If possible, list test paths that achieve Edge Coverage, but not Edge Pair Coverage. If
not possible, explain why not.

Solution:
T = {[1, 2, 3, 2, 4]}
Note that the edge pair [3, 2, 3] is not toured by the single test path given.

(d) List test paths that achieve Edge Pair Coverage.

Solution:
T = {[1, 2, 4], [1, 2, 3, 2, 3, 2, 4]}
Thanks to Justin Donnelly for correcting this solution.

5. Answer questions a–g for the graph defined by the following sets:

• N = {1, 2, 3, 4, 5, 6, 7}
• N0 = {1}
• Nf = {7}
• E = {(1, 2), (1, 7), (2, 3), (2, 4), (3, 2), (4, 5), (4, 6), (5, 6), (6, 1)}

Also consider the following (candidate) test paths:

• p1 = [1, 2, 4, 5, 6, 1, 7]

http://www.cs.gmu.edu/~offutt/softwaretest/

41

• p2 = [1, 2, 3, 2, 4, 6, 1, 7]
• p3 = [1, 2, 3, 2, 4, 5, 6, 1, 7]

(a) Draw the graph.

Solution:
See the graph tool at http: // www. cs. gmu. edu/ ~ offutt/ softwaretest/

(b) List the test requirements for Edge-Pair Coverage. (Hint: You should get 12 require-
ments of length 2.)

Instructor Solution Only
(c) Does the given set of test paths satisfy Edge-Pair Coverage? If not, state what is

missing.

Instructor Solution Only
(d) Consider the simple path [3, 2, 4, 5, 6] and test path [1, 2, 3, 2, 4, 6, 1, 2, 4, 5, 6,

1, 7]. Does the test path tour the simple path directly? With a sidetrip? If so, write
down the sidetrip.

Instructor Solution Only
(e) List the test requirements for Node Coverage, Edge Coverage, and Prime Path Coverage

on the graph.

Instructor Solution Only
(f) List test paths from the given set that achieve Node Coverage but not Edge Coverage

on the graph.

Instructor Solution Only
(g) List test paths from the given set that achieve Edge Coverage but not Prime Path

Coverage on the graph.

Instructor Solution Only

6. Answer questions a–c for the graph in Figure 7.2.

(a) List the test requirements for Node Coverage, Edge Coverage, and Prime Path Coverage
on the graph.

Solution:
TRNC = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
TREC = {(1, 4), (1, 5), (2, 5), (3, 6), (3, 7), (4, 8), (5, 8), (5, 9), (6, 2), (6, 10), (7, 10),
(9, 6) }
TRPPC = { [1, 4, 8], [1, 5, 8], [1, 5, 9, 6, 2], [1, 5, 9, 6, 10], [2, 5, 9, 6, 2], [2, 5, 9, 6, 10],
[3, 6, 2, 5, 8], [3, 6, 2, 5, 9], [3, 6, 10], [3, 7, 10], [5, 9, 6, 2, 5], [6, 2, 5, 9, 6], [9, 6, 2, 5, 8], [9, 6, 2, 5, 9]
}

(b) List test paths that achieve Node Coverage but not Edge Coverage on the graph.

Instructor Solution Only
(c) List test paths that achieve Edge Coverage but not Prime Path Coverage on the graph.

Instructor Solution Only

7. Answer questions a–d for the graph defined by the following sets:

• N = {1, 2, 3}

http://www.cs.gmu.edu/~offutt/softwaretest/

42

• N0 = {1}
• Nf = {3}
• E = {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1)}

Also consider the following (candidate) paths:

• p1 = [1, 2, 3, 1]
• p2 = [1, 3, 1, 2, 3]
• p3 = [1, 2, 3, 1, 2, 1, 3]
• p4 = [2, 3, 1, 3]
• p5 = [1, 2, 3, 2, 3]

(a) Which of the listed paths are test paths? For any path that is not a test path, explain
why not.

Solution:
Answer: p2 and p3 are test paths. p1 does not terminate at a final node. p4 does not
start at an initial node. p5 includes an edge that does not exist in the graph (3, 2).

(b) List the eight test requirements for Edge-Pair Coverage (only the length two subpaths).

Solution:
Answer: The edge pairs are:

{ [1, 2, 1], [1, 2, 3], [1, 3, 1], [2, 1, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 1, 3] }
(c) Does the set of test paths from part (a) above satisfy Edge-Pair Coverage? If not, state

what is missing.

Solution:
Answer: No. Neither p2 nor p3 tours either of the following edge-pairs:

{ [2, 1, 2], [3, 1, 3] }
As discussed in (part a), the remaining candidate paths are not test paths.

(d) Consider the prime path [3, 1, 3] and path p3. Does p3 tour the prime path directly?
With a sidetrip?

Solution:
Answer: p3 does not directly tour the prime path. However, p3 does tour the prime path
with the sidetrip [1, 2, 1].

8. Design and implement a program that will compute all prime paths in a graph, then derive
test paths to tour the prime paths. Although the user interface can be arbitrarily complicated,
the simplest version will be to accept a graph as input by reading a list of nodes, initial nodes,
final nodes, and edges.

Instructor Solution Only

43

Exercises, Section 7.2.3

1. Below are four graphs, each of which is defined by the sets of nodes, initial nodes, final nodes,
edges, and defs and uses. Each graph also contains some test paths. Answer the following
questions about each graph.

Graph I. Graph II.

N = {1, 2, 3, 4, 5, 6, 7, 8} N = {1, 2, 3, 4, 5, 6}
N0 = {1} N0 = {1}
Nf = {8} Nf = {6}
E = {(1, 2), (2, 3), (2, 8), (3, 4), (3, 5), (4, 3), E = {(1, 2), (2, 3), (2, 6), (3, 4), (3, 5), (4, 5), (5, 2)}
(5, 6), (5, 7), (6, 7), (7, 2)} def(1) = def(3) = use(3) = use(6) = {x}
def(1) = def(4) = use(6) = use(8) = {x} // Assume the use of x in 3 precedes the def
Test Paths: Test Paths:

t1 = [1, 2, 8] t1 = [1, 2, 6]
t2 = [1, 2, 3, 5, 7, 2, 8] t2 = [1, 2, 3, 4, 5, 2, 3, 5, 2, 6]
t3 = [1, 2, 3, 5, 6, 7, 2, 8] t3 = [1, 2, 3, 5, 2, 3, 4, 5, 2, 6]
t4 = [1, 2, 3, 4, 3, 5, 7, 2, 8] t4 = [1, 2, 3, 5, 2, 6]
t5 = [1, 2, 3, 4, 3, 4, 3, 5, 6, 7, 2, 8]
t6 = [1, 2, 3, 4, 3, 5, 7, 2, 3, 5, 6, 7, 2, 8]

Graph III. Graph IV.

N = {1, 2, 3, 4, 5, 6} N = {1, 2, 3, 4, 5, 6}
N0 = {1} N0 = {1}
Nf = {6} Nf = {6}
E = {(1, 2), (2, 3), (3, 4), (3, 5), (4, 5), (5, 2), (2, 6)} E = {(1, 2), (2, 3), (2, 6), (3, 4), (3, 5), (4, 5), (5, 2)}
def(1) = def(4) = use(3) = use(5) = use(6) = {x} def(1) = def(5) = use(5) = use(6) = {x}

// Assume the use of x in 5 precedes the def
Test Paths: Test Paths:

t1 = [1, 2, 3, 5, 2, 6] t1 = [1, 2, 6]
t2 = [1, 2, 3, 4, 5, 2, 6] t2 = [1, 2, 3, 4, 5, 2, 3, 5, 2, 6]

t3 = [1, 2, 3, 5, 2, 3, 4, 5, 2, 6]

(a) Draw the graph.
(b) List all of the du-paths with respect to x. (Note: Include all-du-paths, even those that

are subpaths of some other du-path).
(c) Determine which du-paths each test path tours. Write them in a table with test paths

in the first column and the du-paths they cover in the second column. For this part of
the exercise, you should consider both direct touring and sidetrips.

(d) List a minimal test set that satisfies all defs coverage with respect to x. (Direct tours
only.) Use the given test paths.

(e) List a minimal test set that satisfies all uses coverage with respect to x. (Direct tours
only.) Use the given test paths.

(f) List a minimal test set that satisfies all-du-paths coverage with respect to x. (Direct
tours only.) Use the given test paths.

44

Solution:
Solution for Graph I:

(a) See the graph tool at http: // www. cs. gmu. edu/ ~ offutt/ softwaretest/
(b) x has 5 du-paths, as enumerated below:

i [1, 2, 8]

ii [1, 2, 3, 5, 6]

iii [4, 3, 5, 6]

iv [4, 3, 5, 7, 2, 8]

v [4, 3, 5, 6, 7, 2, 8]
(c) The numbers in the table below correspond to the du-paths in the previous table. The

table indicates whether each test path tours each du-path with or without a sidetrip.

direct w/ sidetrip

t1 i

t2 i

t3 ii i

t4 iv

t5 iii, v

t6 iii, iv, v
(d) This question has multiple possible answers. Either t1 or t3 can be used to directly tour

a path that satisfies all-defs for the def at node 0, and either t4 or t5 can be used to
directly tour a path that satisfies all-defs for the def at node 3.

Possible answers: {t1, t4} or {t1, t5} or {t3, t4} or {t3, t5}
(e) This question only has one possible answer: {t1, t3, t5}
(f) This question only has one possible answer: {t1, t3, t4, t5}

Thanks to Matt Rutherford, Ignacio Mart́ın, Stephanie Blake, and Rob Jones for correcting
various parts of this solution.

http://www.cs.gmu.edu/~offutt/softwaretest/

45

Instructor Solution Only

46

Solution:
Solution for Graph III: Note that this exercise is the same as Graph II, except that the def/use
sets are slightly different.

(a) See the graph tool at http: // www. cs. gmu. edu/ ~ offutt/ softwaretest/
(b) x has 6 du-paths, as enumerated below:

i [1, 2, 3]

ii [1, 2, 3, 5]

iii [1, 2, 6]

iv [4, 5]

v [4, 5, 2, 3]

vi [4, 5, 2, 6]
(c) The numbers in the table below correspond to the du-paths in the previous table. The

table indicates whether each test path tours each du-path with or without a sidetrip.

direct w/ sidetrip

t1 i, ii iii

t2 i, iv, vi

Note that neither t1 nor t2 tours du-path (v), either directly or with a sidetrip. Also
note that neither t1 nor t2 tours du-path (iii) directly. t1 does tour du-path (iii) with a
sidetrip. But t2 does not tour du-path (iii) with a sidetrip; the problem is the def of x
in node 4.

(d) This question has one possible answer: {t2}.
(e) For all-uses, all six du-paths must be toured. Since the given test set does not have a

test path that directly tours either of du-paths (iii) or (v), this question is unsatisfiable.
To directly tour the given du− paths, we would two additional test paths. An example
all-uses adequate test set (direct touring) is: {t1, t2, [1, 2, 6], [1, 2, 3, 4, 5, 2, 3, 5, 2, 6]}.

(f) For this exercise, all-du-paths coverage is the same as all-uses coverage. The reason is
that there is only one du-path for each du-pair.

Thanks to Rama Kesavan for pointing out the error in this solution. (February 2011).

http://www.cs.gmu.edu/~offutt/softwaretest/

47

Instructor Solution Only

48

Exercises, Section 7.3

1. Use the following program fragment for questions a–e below.

w = x; // node 1

if (m > 0)

{

w++; // node 2

}

else

{

w=2*w; // node 3

}

// node 4 (no executable statement)

if (y <= 10)

{

x = 5*y; // node 5

}

else

{

x = 3*y+5; // node 6

}

z = w + x; // node 7

(a) Draw a control flow graph for this program fragment. Use the node numbers given
above.

Instructor Solution Only

49

(b) Which nodes have defs for variable w?

Instructor Solution Only

(c) Which nodes have uses for variable w?

Instructor Solution Only

(d) Are there any du-paths with respect to variable w from node 1 to node 7? If not,
explain why not. If any exist, show one.

Instructor Solution Only

(e) List all of the du-paths for variables w and x.

Instructor Solution Only

2. Select a commercial coverage tool of your choice. Note that some have free trial evaluations.
Choose a tool, download it, and run it on some software. You can use one of the examples
from this text, software from your work environment, or software available over the Web.
Write up a short summary report of your experience with the tool. Be sure to include any
problems installing or using the tool. The main grading criterion is that you actually collect
some coverage data for a reasonable set of tests on some program.

Solution:
This question doesn’t really have a textbook solution. The problem with links to specific tools is
that the set of available tools is quite dynamic, and hence links go out of date with regularity.
Googling Java coverage will bring back a large number of mostly current links, typically
including links that catalog and summarize available tools. This is an excellent exercise for
making the coverage theory in the text “real.”

3. Consider the pattern matching example in Figure 7.25. Instrument the code to produce
the execution paths in the text for this example. That is, on a given test execution, your
instrumentated program should compute and print the corresponding test path. Run the
instrumented program on the test cases listed at the end of Section 7.3.

Solution:
Access PatternIndexInstrument.java on the book website.

4. Consider the pattern matching example in Figure 7.25. In particular, consider the final table
of tests in Section 7.3. Consider the variable iSub. Number the (unique) test cases, starting
at 1, from the top of the iSub part of the table. For example, (ab, c,−1), which appears twice
in the iSub portion of the table, should be labeled test t4.

Solution:

http://www.cs.gmu.edu/~offutt/softwaretest/java/PatternIndexInstrument.java

50

Test Number Test

t1 (ab, ab, 0)

t2 (ab, a, 0)

t3 (ab, ac, -1)

t4 (ab, c, -1)

t5 (a, bc, -1)

t6 (abc, bc, 1)

t7 (ab, b, 1)

t8 (abc, ba, -1)

t4 (ab, c, -1)

t2 (ab, a, 0)

(a) Give a minimal test set that satisfies all defs coverage. Use the test cases given.

Instructor Solution Only
(b) Give a minimal test set that satisfies all uses coverage.

Instructor Solution Only
(c) Give a minimal test set that satisfies all-du-paths coverage.

Instructor Solution Only

5. Again consider the pattern matching example in Figure 7.25. Instrument the code to produce
the execution paths reported in the text for this example. That is, on a given test execution,
your tool should compute and print the corresponding test path. Run the following three
test cases and answer questions a–g below:

• subject = “brown owl” pattern = “wl” expected output = 7

• subject = “brown fox” pattern = “dog” expected output = -1

• subject = “fox” pattern = “brown” expected output = -1

(a) Find the actual path followed by each test case.

Solution:
Access PatternIndexInstrument.java on the book website.

t1: java PatternIndexInstrument "brown owl" wl

Pattern string begins at the character 7

Path is [1, 2, 3, 4, 10, 3, 4, 10, 3, 4, 10, 3, 4, 5, 6, 7, 8, 10, 3, 4, 10,

3, 4, 10, 3, 4, 10, 3, 4, 5, 6, 7, 9, 6, 10, 3, 11]

t2: java PatternIndexInstrument "brown fox" dog

Pattern string is not a substring of the subject string

Path is [1, 2, 3, 4, 10, 3, 4, 10, 3, 4, 10, 3, 4, 10, 3, 4, 10, 3, 4, 10,

3, 4, 10, 3, 11]

t3: java PatternIndexInstrument fox brown

Pattern string is not a substring of the subject string

Path is [1, 2, 3, 11]

http://www.cs.gmu.edu/~offutt/softwaretest/java/PatternIndexInstrument.java

51

(b) For each path, give the du-paths that the path tours in the table at the end of Section
7.3. To reduce the scope of this exercise, consider only the following du-paths: du (10,
iSub), du (2, isPat), du (5, isPat), and du (8, isPat).

Solution:
In the following table, we give information about both direct tours and tours with side-
trips. Specifically, ‘+’ means ‘tours directly’, ‘-’ means ‘does not tour’, ‘+!’ means
‘tours with def-clear sidetrip’, and ‘-!’ means ‘tours, but sidetrip has def ’. Also, we
only consider du-paths from Table 7.5. That is, we ignore the du-paths that are prefixes
of other du-paths; see Table 7.3 for details. Note that except for the infeasible du-path
[5, 6, 10, 3, 4], all-du-paths can be toured directly by some test case; hence when
we apply Best Effort touring later in this exercise, we demand a direct tour.

Source du-path t1 t2 t3

du(10,iSub) [10, 3, 4, 5, 6, 7, 9] + - -

[10, 3, 4, 5, 6, 10] +! - -

[10, 3, 4, 5, 6, 7, 8, 10] + - -

[10, 3, 4, 10] + + -

[10, 3, 11] + + -

du(2,isPat) [2, 3, 4] + + -

[2, 3, 11] -! +! +

du(5,isPat) [5, 6, 10, 3, 4] - - -

[5, 6, 10, 3, 11] +! - -

du(8,isPat) [8, 10, 3, 4] + - -

[8, 10, 3, 11] -! - -

(c) Explain why the du-path [5, 6, 10, 3, 4] cannot be toured by any test path.

Solution:
Since the value if isPat is set to true in node 5 and not reset on the path [6, 10, 3],
the next node must be 11, not 4. Hence the du path [5, 6, 10, 3, 4] is infeasible.

(d) Select tests from the table at the end of Section 7.3 to complete coverage of the (feasible)
du-paths that are uncovered in question (a).

Solution:
The given tests do not directly tour the following 3 (feasible) du-paths: [10, 3, 4, 5, 6,
10], [5, 6, 10, 3, 11], and [8, 10, 3, 11]. According to Table 7.5, tests (ab,b), (ab,a), and
(ab,ac) respectively tour these du-paths directly. Note that Best Effort touring requires
a direct tour of each feasible du-path.

(e) From the tests above, find a minimal set of tests that achieves All-Defs Coverage with
respect to the variable isPat.

Solution:
To start, it’s helpful to extend the table given in part (b) to include the 3 additional tests.
Since direct tours are possible, we leave out the sidetrip information in this version of
the table.

52

Source du-path t1 t2 t3 (ab, b) (ab, a) (ab, ac)

du(10,iSub) [10, 3, 4, 5, 6, 7, 9] +

[10, 3, 4, 5, 6, 10] +

[10, 3, 4, 5, 6, 7, 8, 10] +

[10, 3, 4, 10] + +

[10, 3, 11] + + + + +

du(2,isPat) [2, 3, 4] + + + + +

[2, 3, 11] +

du(5,isPat) [5, 6, 10, 3, 4]

[5, 6, 10, 3, 11] + +

du(8,isPat) [8, 10, 3, 4] +

[8, 10, 3, 11] +

For All-Defs (Best Effort Touring) with respect to isPat, we need to tour 3 du-paths,
starting with, respectively, nodes 2, 5, and 8. Possible minimal sets are: {t1, (ab, b)},
{t1, (ab, a)}, {(ab, b), (ab, ac)}, or {(ab, a), (ab, ac)}.

(f) From the tests above, find a minimal set of tests that achieves All-Uses Coverage with
respect to the variable isPat.

Solution:
For All-Uses (Best Effort Touring) with respect to isPat, we need to tour the 5 feasible
du-paths starting with nodes 2, 5, and 8. Tests t1, t3, and (ab, ac) are always needed
since they are the only tests that tour [8, 10, 3, 4], [2, 3, 11], and [8, 10, 3,

11], respectively. In addition, we need either (ab, b) or (ab, a) to tour [2, 3, 4] and
[5, 6, 10, 3, 11]. Hence there are two possible answers: {t1, t3 (ab, b), (ab, ac)} or
{t1, t3 (ab, a), (ab, ac)}.

(g) Is there any difference between All-Uses Coverage and all-DU-Paths Coverage with
respect to the variable isPat in the pat() method?

Solution:
No. The test requirements are the same with respect to isPat. Note, however, that they
are not the same with respect to iSub.

6. Use the method fmtRewrap() for questions a–e below. A compilable version is available
on the book website in the file FmtRewrap.java. A line-numbered version suitable for this
exercise is available on the book website in the file FmtRewrap.num.

(a) Draw the control flow graph for the fmtRewrap() method.

Solution:

53

Note that in the switch statement, there is a separate node for the case inWord, which,
due to Java semantics, falls through directly to the default case.

(b) For fmtRewrap(), find a test case such that the corresponding test path visits the edge
that connects the beginning of the while statement to the S = new String(SArr) +

CR; statement without going through the body of the while loop.

Solution:
There is only one test that does this–the empty string S. It doesn’t matter what N, the

54

output line length, is. The resulting path is [1, 2, 19].
(c) List the test requirements for Node Coverage, Edge Coverage, and Prime Path Coverage.

Solution:

• Node Coverage: { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 }
• Edge Coverage: { (1,2), (2,3), (2,19), (3,4), (3,5), (4,10), (5,6), (5,7), (6,10),

(7,8), (7,9), (8,10), (9,10), (10,11), (10,12), (10,13), (10,16), (10,17), (11,18),
(12,18), (13,14), (13,15), (14,18), (15,18), (16,17), (17,18), (18,2) }

• Prime Path Coverage: There are 403 prime paths for fmt; we don’t list them here.
See the graph tool at http: // www. cs. gmu. edu/ ~ offutt/ softwaretest/ for a
complete enumeration
To get a grasp on why there are so many prime paths, consider the ”loop” prime
paths starting at node 2. It is possible to take any of 4 paths through the if else

statement, and then combine each of these with 6 paths through the case statement
and return to node 2, yielding 24 prime paths. For node 3, the analysis is more
complex: 4 choices combined with 6 choices to node 2, combined with 2 more choices
(3 or 19), for a total of 48 prime paths.

(d) List test paths that achieve Node Coverage but not Edge Coverage on the graph.

Solution:

This is certainly possible. The key is noticing that it is possible to visit nodes 10, 16,
and 17 without traversing edge (10,17). Test paths are available online. See the graph
tool at http: // www. cs. gmu. edu/ ~ offutt/ softwaretest/ .

Thanks to Martin Gebert for correcting this solution.
(e) List test paths that achieve Edge Coverage but not prime Path Coverage on the graph.

Solution:
This is certainly possible; you can find test paths for Edge Coverage and Prime Path
Coverage online. See the graph tool at http: // www. cs. gmu. edu/ ~ offutt/ softwaretest/ .

7. Use the method printPrimes() for questions a–f below. A compilable version is available
on the book website in the file PrintPrimes.java. A line-numbered version suitable for this
exercise is available on the book website in the file PrintPrimes.num.

(a) Draw the control flow graph for the printPrimes() method.

Instructor Solution Only
(b) Consider test cases t1 = (n = 3) and t2 = (n = 5). Although these tour the same prime

paths in printPrimes(), they do not necessarily find the same faults. Design a simple
fault that t2 would be more likely to discover than t1 would.

Instructor Solution Only
(c) For printPrimes(), find a test case such that the corresponding test path visits the

edge that connects the beginning of the while statement to the for statement that
appears after the while loop, without going through the body of the while loop.

Instructor Solution Only

http://www.cs.gmu.edu/~offutt/softwaretest/
http://www.cs.gmu.edu/~offutt/softwaretest/
http://www.cs.gmu.edu/~offutt/softwaretest/

55

(d) List the test requirements for Node Coverage, Edge Coverage, and Prime Path Coverage.

Instructor Solution Only
(e) List test paths that achieve Node Coverage but not Edge Coverage on the graph.

Instructor Solution Only
(f) List test paths that achieve Edge Coverage but not Prime Path Coverage on the graph.

Instructor Solution Only

8. Consider the equals() method from the java.util.AbstractList<E> class:

public boolean equals (Object o)

{

if (o == this) // A

return true;

if (!(o instanceof List)) // B

return false;

ListIterator<E> e1 = listIterator();

ListIterator<?> e2 = ((List) o).listIterator();

while (e1.hasNext() && e2.hasNext()) // C

{

E o1 = e1.next();

Object o2 = e2.next();

if (!(o1 == null ? o2 == null : o1.equals (o2))) // D

return false;

}

return !(e1.hasNext() || e2.hasNext()); // E

}

(a) Draw a control flow graph for this method. Several possible values can be used for the
node numbers in the graph. Choose something reasonable.

Instructor Solution Only
(b) Label edges and nodes in the graph with the corresponding code fragments. You may

abbreviate predicates as follows when labeling your graph:

A: o == this

B: !(o instanceof List)

C: e1.hasNext() && e2.hasNext()

D: !(o1 == null ? o2 == null : o1.equals(o2))

E: !(e1.hasNext() || e2.hasNext())

Instructor Solution Only
(c) Node coverage requires (at least) four tests on this graph. Explain why.

Instructor Solution Only
(d) Provide four tests (as calls to equals()) that satisfy node coverage on this graph.

Make your tests short. You need to include output assertions. Assume that each test
is independent and starts with the following state:

List<String> list1 = new ArrayList<String>();
List<String> list2 = new ArrayList<String>();
Use the constants null, “ant”, “bat”, etc. as needed.

56

Instructor Solution Only

Instructor Solution Only

Instructor Solution Only

Instructor Solution Only

Instructor Solution Only

57

Exercises, Section 7.4

1. Use the class Watch in Figures 7.38 and 7.39 in Section 7.5 to answer questions a–d below.

(a) Draw a control flow graph for Watch.

Solution:
The point of this question is getting students to think about how to handle the call
sites. Figure 7.40, which gives control flow graphs for methods doTransition() and
changeTime(), illustrates the problem of trying naively to aggregate control flow graphs.
The alternate approach of expanding each method call into its corresponding graph un-
fortunately causes the control flow graph to balloon in size. Hence, neither approach is
particularly useful. However, just tracking du-pairs accross call-sites, as parts (b), (c),
and (d) do below, does scale.

(b) List all the call sites.

The version in the book does not have line numbers. The answers below use the line
numbers in the following version.

58

1 public class Watch

2 {

3 // Constant values for the button (inputs)

4 private static final int NEXT = 0;

5 private static final int UP = 1;

6 private static final int DOWN = 2;

7

8 // Constant values for the state

9 private static final int TIME = 5;

10 private static final int STOPWATCH = 6;

11 private static final int ALARM = 7;

12

13 // Primary state variable

14 private int mode = TIME;

15

16 // Three separate times, one for each state

17 private Time watch, stopwatch, alarm;

18

19 // Inner class keeps track of hours and minutes

20 public class Time

21 {

22 private int hour = 0;

23 private int minute = 0;

24

25 // Increases or decreases the time.

26 // Rolls around when necessary.

27 public void changeTime (int button)

28 {

29 if (button == UP)

30 {

31 minute += 1;

32 if (minute >= 60)

33 {

34 minute = 0;

35 hour += 1;

36 if (hour >= 12)

37 hour = 0;

38 }

39 }

40 else if (button == DOWN)

41 {

42 minute -= 1;

43 if (minute < 0)

44 {

45 minute = 59;

46 hour -= 1;

47 if (hour <= 0)

48 hour = 12;

49 }

50 }

51 } // end changeTime()

52

53 public String toString ()

54 {

55 return (hour + ":" + minute);

56 } // end toString()

57 } // end class Time

58

59

59

60 public Watch () // Constructor

61 {

62 watch = new Time();

63 stopwatch = new Time();

64 alarm = new Time();

65 } // end Watch constructor

66

67 public String toString () // Converts values

68 {

69 return ("watch is: " + watch + "\n"

70 + "stopwatch is: " + stopwatch + "\n"

71 + "alarm is: " + alarm);

72 } // end toString()

73

74 public void doTransition (int button) // Handles inputs

75 {

76 switch (mode)

77 {

78 case TIME:

79 if (button == NEXT)

80 mode = STOPWATCH;

81 else

82 watch.changeTime (button);

83 break;

84 case STOPWATCH:

85 if (button == NEXT)

86 mode = ALARM;

87 else

88 stopwatch.changeTime (button);

89 break;

90 case ALARM:

91 if (button == NEXT)

92 mode = TIME;

93 else

94 alarm.changeTime (button);

95 break;

96 default:

97 break;

98 }

99 } // end doTransition()

100 } // end Watch

Solution:
The call sites are:

i. Line 62, Watch::constructor() → Time:constructor()

ii. Line 63, Watch::constructor() → Time:constructor()

iii. Line 64, Watch::constructor() → Time:constructor()

iv. Line 69, Watch::toString() → Time:toString()

v. Line 70, Watch::toString() → Time:toString()

vi. Line 70, Watch::toString() → Time:toString()

vii. Line 82, Watch::doTransition() → Time:changeTime()

viii. Line 88, Watch::doTransition() → Time:changeTime()

ix. Line 94, Watch::doTransition() → Time:changeTime()

(c) List all coupling du-pairs for each call site.

Solution:

60

i. Call sites i, ii, and iii are implicit within the constructor for Watch. Since Time
does not have a constructor defined, the default constructor is called (by Java’s
rules, that means the default values are assigned to the instance variales, that is,
hour and minute both get the value 0).

ii. Call sites iv, v, and vi are from Watch’s toString() method to Time’s toString
method. The Time objects are passed in, and a string is returned. Time’s toString()
method does not refer to the object explicitly, so we use “instance” for the variable
name. The six du-pairs are:

A. (Watch::toString(), watch, 69) → (Time::toString(), instance, 55)

B. (Watch::toString(), stopwatch, 70) → (Time::toString(), instance, 55)

C. (Watch::toString(), alarm, 71) → (Time::toString(), instance, 55)

D. (Time::toString(), String, 55) → (Watch::toString(), String, 69)

E. (Time::toString(), String, 55) → (Watch::toString(), String, 70)

F. (Time::toString(), String, 55) → (Watch::toString(), String, 71)

iii. Call sites vii, viii, and ix are from Watch’s doTransition() to Time’s changeTime().
The parameter button is implicitly defined at line 74 (entrance to the method), and
the Time objects are defined within changeTime(). The first three coupling du-pairs
have the same line numbers for the last-defs and first-uses, so are annoted with the
call site number. Because of the complex logic in changeTime(), it contains six
last-defs of its instance variable (assignments to minute and hour), resulting in 18
coupling du-pairs for values returned to doTransition().

A. Call site vii: (Watch::doTransition(), button, 74) → (Time::changeTime(),
29)

B. Call site viii: (Watch::doTransition(), button, 74) → (Time::changeTime(),
29)

C. Call site vix: (Watch::doTransition(), button, 74) → (Time::changeTime(),
29)

D. (Time::changeTime(), instance, 31) → (Watch::doTransition(), watch, 82)

E. (Time::changeTime(), instance, 35) → (Watch::doTransition(), watch, 82)

F. (Time::changeTime(), instance, 37) → (Watch::doTransition(), watch, 82)

G. (Time::changeTime(), instance, 42) → (Watch::doTransition(), watch, 82)

H. (Time::changeTime(), instance, 46) → (Watch::doTransition(), watch, 82)

I. (Time::changeTime(), instance, 48) → (Watch::doTransition(), watch, 82)

J. (Time::changeTime(), instance, 31)→ (Watch::doTransition(), stopwatch, 88)

K. (Time::changeTime(), instance, 35)→ (Watch::doTransition(), stopwatch, 88)

L. (Time::changeTime(), instance, 37)→ (Watch::doTransition(), stopwatch, 88)

M. (Time::changeTime(), instance, 42)→ (Watch::doTransition(), stopwatch, 88)

N. (Time::changeTime(), instance, 46)→ (Watch::doTransition(), stopwatch, 88)

O. (Time::changeTime(), instance, 48)→ (Watch::doTransition(), stopwatch, 88)

P. (Time::changeTime(), instance, 31) → (Watch::doTransition(), alarm, 94)

Q. (Time::changeTime(), instance, 35) → (Watch::doTransition(), alarm, 94)

61

R. (Time::changeTime(), instance, 37) → (Watch::doTransition(), alarm, 94)

S. (Time::changeTime(), instance, 42) → (Watch::doTransition(), alarm, 94)

T. (Time::changeTime(), instance, 46) → (Watch::doTransition(), alarm, 94)

U. (Time::changeTime(), instance, 48) → (Watch::doTransition(), alarm, 94)

(d) Create test data to satisfy All-Coupling-Use Coverage for Watch.

Solution:
This example demonstrates the power of All-Coupline-Use, because it requires some very
long tests. A common concern about test criteria and automated test data generation is
that they might not require long tests. To tour the coupling du-pairs on the “rollover”
assignments of minute at lines 35 and 46, we must increment the watch 60 times. To
tour the coupling du-pairs on the “rollover” assignments of hour at lines 37 and 48, we
must increment the watch 60*24 = 1440 times! The other coupling du-pairs are trivial,
so we only give tests for the 18 coupling du-pairs from changeTime() to doTransition().

i. t1: mode = TIME, button = UP

ii. t2: mode = TIME, button = UP, UP, ..., UP 60 times (we abbreviate this as
UP 60)

iii. t3: mode = TIME, button = UP 1440

iv. t4: mode = TIME, button = DOWN

v. t5: mode = TIME, button = DOWN60

vi. t6: mode = TIME, button = DOWN1440

vii. t7: mode = STOPWATCH, button = UP

viii. t8: mode = STOPWATCH, button = UP 60

ix. t9: mode = STOPWATCH, button = UP 1440

x. t10: mode = STOPWATCH, button = DOWN

xi. t11: mode = STOPWATCH, button = DOWN60

xii. t12: mode = STOPWATCH, button = DOWN1440

xiii. t13: mode = ALARM, button = UP

xiv. t14: mode = ALARM, button = UP 60

xv. t15: mode = ALARM, button = UP 1440

xvi. t16: mode = ALARM, button = DOWN

xvii. t17: mode = ALARM, button = DOWN60

xviii. t18: mode = ALARM, button = DOWN1440

2. Use the class Stutter for questions a–d below. A compilable version is available on the
book website in the file Stutter.java. A line-numbered version suitable for this exercise is
available on the book website in the file Stutter.num.

(a) Draw control flow graphs for the methods in Stutter.

Instructor Solution Only
(b) List all the call sites.

Instructor Solution Only

62

(c) List all du-pairs for each call site.

Instructor Solution Only
(d) Create test data to satisfy All-Coupling Use Coverage for Stutter.

Instructor Solution Only

3. Use the following program fragment for questions a–e below.

public static void f1 (int x, int y)

{

if (x < y) { f2 (y); } else { f3 (y); };

}

public static void f2 (int a)

{

if (a % 2 == 0) { f3 (2*a); };

}

public static void f3 (int b)

{

if (b > 0) { f4(); } else { f5(); };

}

public static void f4() {... f6()....}

public static void f5() {... f6()....}

public static void f6() {...}

Use the following test inputs:

• t1 = f1 (0, 0)
• t2 = f1 (1, 1)
• t3 = f1 (0, 1)
• t4 = f1 (3, 2)
• t5 = f1 (3, 4)

(a) Draw the call graph for this program fragment.

Solution:

Note that in the call graph, all of the public methods are potentially initial nodes. Final
nodes are not marked in the given diagram. However, the code shown suggests that f2
is final (since there is no requirement that further calls are made), and that f6 may be
final (no calls are shown). The remaining nodes are not final; there is always another
call from f1, f3, f4, and f5.

63

(b) Give the path in the graph followed by each test.

Solution:

• t1: [f1, f3, f5, f6]

• t2: [f1, f3, f4, f6]

• t3: [f1, f2]

• t4: [f1, f3, f4, f6]

• t5: [f1, f2, f3, f4, f6]

(c) Find a minimal test set that achieves Node Coverage.

Solution:
Three possibilities: {t1, t2, t3}, {t1, t3, t4}, or {t1, t5}.

(d) Find a minimal test set that achieves Edge Coverage.

Solution:
One possibility: {t1, t5}

(e) Give the prime paths in the graph. Which prime path is not covered by any of the tests
above?

Solution:
There are 4 prime paths: { [f1, f2, f3, f4, f6], [f1, f2, f3, f5, f6], [f1,

f3, f4, f6], [f1, f3, f5, f6] }. The second of these paths is not covered by the
given test paths.

4. Use the following methods trash() and takeOut() to answer questions a–c.

1 public void trash (int x) 15 public int takeOut (int a, int b)

2 { 16 {

3 int m, n; 17 int d, e;

4 18

5 m = 0; 19 d = 42*a;

6 if (x > 0) 20 if (a > 0)

7 m = 4; 21 e = 2*b+d;

8 if (x > 5) 22 else

9 n = 3*m; 23 e = b+d;

10 else 24 return (e);

11 n = 4*m; 25 }

12 int o = takeOut (m, n);

13 System.out.println ("o is: " + o);

14 }

(a) Give all call sites using the line numbers given.

Instructor Solution Only
(b) Give all pairs of last-defs and first-uses.

Instructor Solution Only
(c) Provide test inputs that satisfy all-coupling-uses (note that trash() only has one input).

Instructor Solution Only

64

Exercises, Section 7.5

1. Use the class BoundedQueue2 for questions a–f below. A compilable version is available on the
book website in the file BoundedQueue2.java. The queue is managed in the usual circular
fashion.

Suppose we build a FSM where states are defined by the representation variables of Bound-
edQueue2. That is, a state is a 4-tuple defined by the values for [elements, size, front, back].
For example, the initial state has the value [[null, null], 0, 0, 0], and the state that results
from pushing an object obj onto the queue in its initial state is [[obj, null], 1, 0, 1].

(a) We do not actually care which specific objects are in the queue. Consequently, there
are really just four useful values for the variable elements. What are they?

Instructor Solution Only
(b) How many states are there?

Instructor Solution Only
(c) How many of these states are reachable?

Instructor Solution Only

65

(d) Draw the reachable states in a graph. Be sure to indicate size, font, and back in your
state labels.

Instructor Solution Only
(e) Add edges for the enQueue() and deQueue() methods. (For this assignment, ignore

the exceptional returns, although you should observe that when exceptional returns are
taken, none of the instance variables are modified.)

Instructor Solution Only
(f) Define, implement in JUnit, and execute a test set that achieves Edge Coverage. You

might find it helps to verify your answer if you write a method that shows the internal
variables after each call.

Instructor Solution Only

2. For the following questions a–c, consider the FSM that models a (simplified) programmable
thermostat. Suppose the variables that define the state and the methods that transition
between states are:

partOfDay : {Wake, Sleep}

temp : {Low, High}

// Initially "Wake" at "Low" temperature

// Effects: Advance to next part of day

public void advance();

// Effects: Make current temp higher, if possible

public void up();

// Effects: Make current temp lower, if possible

public void down();

(a) How many states are there?

Instructor Solution Only
(b) Draw and label the states (with variable values) and transitions (with method names).

Notice that all of the methods are total.

Instructor Solution Only
(c) A test case is simply a sequence of method calls. Provide a test set that satisfies Edge

Coverage on your graph.

Instructor Solution Only

66

Exercises, Section 7.6

1. Construct two separate use cases and use case scenarios for interactions with a bank Auto-
mated Teller Machine. Do not try to capture all the functionality of the ATM into one graph;
think about two different people using the ATM and what each one might do.

Design test cases for your scenarios.

Instructor Solution Only

67

Chapter 8

Exercises, Section 8.1

1. List all the clauses for the predicate below:
((f <= g) ∧ (X > 0)) ∨ (M ∧ (e < d + c))

Solution:
There are four: f <= g, X > 0, M , and e < d + c.

2. List all the clauses for the predicate below:
(G ∨ ((m > a) ∨ (s <= o + n)) ∧ U)

Instructor Solution Only

3. Write the predicate (only the predicate) to represent the requirement: “List all the wireless
mice that either retail for more than $100 or for which the store has more than 20 items.
Also list non-wireless mice that retail for more than $50.”

Solution:
The predicate describing whether to list a given mouse is:
((mouseType = wireless) ∧ ((retail > 100) ∨ (stock > 20)))∨
(¬(mouseType = wireless) ∧ (retail > 50))

Note: Many students need additional practice with this type of exercise. Typical textbooks
used in discrete structures classes are an excellent source for sample problems.

4. Use predicates (i) through (x) to answer the following questions.

i. p = a ∧ (¬b ∨ c)
ii. p = a ∨ (b ∧ c)

iii. p = a ∧ b
iv. p = a→ (b→ c)
v. p = a⊕ b

vi. p = a↔ (b ∧ c)
vii. p = (a ∨ b) ∧ (c ∨ d)

viii. p = (¬a ∧ ¬b) ∨ (a ∧ ¬c) ∨ (¬a ∧ c)
ix. p = a ∨ b ∨ (c ∧ d)
x. p = (a ∧ b) ∨ (b ∧ c) ∨ (a ∧ c)

(a) List the clauses that go with predicate p.

(b) Compute (and simplify) the conditions under which each clause determines predicate
p.

(c) Write the complete truth table for the predicate. Label your rows starting from 1.
Use the format in the example underneath the definition of Combinatorial Coverage in
Section 8.1.1. That is, row 1 should be all clauses true. You should include columns for
the conditions under which each clause determines the predicate, and also a column for
the value of the predicate itself.

68

(d) List all pairs of rows from your table that satisfy General Active Clause Coverage
(GACC) with respect to each clause.

(e) List all pairs of rows from your table that satisfy Correlated Active Clause Coverage
(CACC) with respect to each clause.

(f) List all pairs of rows from your table that satisfy Restricted Active Clause Coverage
(RACC) with respect to each clause.

(g) List all 4-tuples of rows from your table that satisfy General Inactive Clause Coverage
(GICC) with respect to each clause. List any infeasible GICC test requirements.

(h) List all 4-tuples of rows from your table that satisfy Restricted Inactive Clause Coverage
(RICC) with respect to each clause. List any infeasible RICC test requirements.

69

Solution for (i), p = a ∧ (¬b ∨ c)

Instructor Solution Only

70

Solution:
Solution for (ii), p = a ∨ (b ∧ c)

(a) Clauses are a, b, c.

(b) pa = ¬b ∨ ¬c
pb = ¬a ∧ c
pc = ¬a ∧ b

(c) Note: Blank cells represent values of ‘F’.

a b c p pa pb pc
1 T T T T

2 T T F T T

3 T F T T T

4 T F F T T

5 F T T T T T

6 F T F T T

7 F F T T T

8 F F F T

(d) GACC pairs for clause a are: {2, 3, 4} × {6, 7, 8}.
There is only one GACC pair for clause b: (5, 7).
There is only one GACC pair for clause c: (5, 6).

(e) CACC pairs for clauses a, b, and c are the same as GACC pairs.

(f) RACC pairs for clause a are: (2, 6), (3, 7), (4, 8).
RACC pairs for clauses b and c are the same as CACC pairs.

(g) GICC tuples for a are: no feasible pair for p = F ; (1,5) for p = T .
GICC tuples for b are: (6, 8) for p = F ; {1, 2} × {3, 4} for p = T .
GICC tuples for c are: (7, 8) for p = F ; {1, 3} × {2, 4} for p = T .

(h) RICC tuples for a are same as GICC.
RICC tuples for b are: (6, 8) for p = F ; (1, 3), (2, 4) for p = T .
RICC tuples for c are: (7, 8) for p = F ; (1, 2), (3, 4) for p = T .

71

Solution:
Solution for (iii), p = a ∧ b

(a) Clauses are a, b.

(b) pa = b
pb = a

(c) Note: Blank cells represent values of ‘F’.

a b p pa pb
1 T T T T T

2 T F T

3 F T T

4 F F

(d) There is only one GACC pair for clause a: (1, 3).
There is only one GACC pair for clause b: (1, 2).

(e) CACC pairs for clauses a and b are the same as GACC pairs.

(f) RACC pairs for clauses a and b are the same as CACC pairs.

(g) GICC tuples for a are: (2, 4) for p = F ; no feasible pair for p = T .
GICC tuples for b are: (3, 4) for p = F ; no feasible pair for p = T .

(h) RICC tuples for clauses a and b are the same as GICC tuples.

72

Solution:
Solution for (iv), p = a→ (b→ c)

(a) Clauses are a, b, c.

(b) pa = b ∧ ¬c
pb = a ∧ ¬c
pc = a ∧ b

(c) Note: Blank cells represent values of ‘F’.

a b c p pa pb pc
1 T T T T T

2 T T F T T T

3 T F T T

4 T F F T T

5 F T T T

6 F T F T T

7 F F T T

8 F F F T

(d) There is only one GACC pair for clause a: (2, 6).
There is only one GACC pair for clause b: (2, 4).
There is only one GACC pair for clause c: (1, 2).

(e) CACC pairs for clauses a, b, and c are the same as GACC pairs.

(f) RACC pairs for clauses a, b, and c are the same as CACC pairs.

(g) GICC tuples for a are: no feasible pair for p = F ; {1, 3, 4} × {5, 7, 8} for p = T .
GICC tuples for b are: no feasible pair for p = F ; {1, 5, 6} × {3, 7, 8} for p = T .
GICC tuples for c are: no feasible pair for p = F ; {3, 5, 7} × {4, 6, 8} for p = T .

(h) RICC tuples for a are: no feasible pair for p = F ; (1, 5), (3, 7), (4, 8) for p = T .
RICC tuples for b are: no feasible pair for p = F ; (1, 3), (5, 7), (6, 8) for p = T .
RICC tuples for c are: no feasible pair for p = F ; (3, 4), (5, 6), (7, 8) for p = T .

73

Solution for (v), p = a⊕ b

Instructor Solution Only

74

Solution:
Solution for (vi), p = a↔ (b ∧ c)

(a) Clauses are a, b, c.

(b) pa = T
pb = c
pc = b

(c) Note: Blank cells represent values of ‘F’.

a b c p pa pb pc
1 T T T T T T T

2 T T F T T

3 T F T T T

4 T F F T

5 F T T T T T

6 F T F T T T

7 F F T T T T

8 F F F T T

(d) GACC pairs for clause a are: {1, 2, 3, 4} × {5, 6, 7, 8}.
GACC pairs for clause b are: {1, 5} × {3, 7}.
GACC pairs for clause c are: {1, 5} × {2, 6}.

(e) CACC pairs for clause a are: (1, 5) ∪ {2, 3, 4} × {6, 7, 8}.
CACC pairs for clause b are: (1, 3), (5, 7) for clause b.
CACC pairs for clause c are: (1, 2), (5, 6) for clause c.

(f) RACC pairs for clause a are: (1, 5), (2, 6), (3, 7), (4, 8).
RACC pairs for clauses b and c are the same as CACC pairs.

(g) There are no GICC tuples for clause a.
GICC tuples for b are: (2, 4) for p = F ; (6, 8) for p = T .
GICC tuples for c are: (3, 4) for p = F ; (7, 8) for p = T .

(h) RICC tuples for clauses a, b, and c are the same as GICC tuples.

75

Solution:
Solution for (vii), p = (a ∨ b) ∧ (c ∨ d)

(a) Clauses are a, b, c, d.

(b) pa = ¬b ∧ (c ∨ d)
pb = ¬a ∧ (c ∨ d)
pc = ¬d ∧ (a ∨ b)
pd = ¬c ∧ (a ∨ b)

(c) Note: Blank cells represent values of ‘F’.

a b c d p pa pb pc pd
1 T T T T T

2 T T T F T T

3 T T F T T T

4 T T F F T T

5 T F T T T T

6 T F T F T T T

7 T F F T T T T

8 T F F F T T

9 F T T T T T

10 F T T F T T T

11 F T F T T T T

12 F T F F T T

13 F F T T T T

14 F F T F T T

15 F F F T T T

16 F F F F

(d) GACC pairs for clause a are: {5, 6, 7} × {13, 14, 15}.
GACC pairs for clause b are: {9, 10, 11} × {13, 14, 15}.
GACC pairs for clause c are: {2, 6, 10} × {4, 8, 12}.
GACC pairs for clause d are: {3, 7, 11} × {4, 8, 12}.

(e) CACC pairs for clauses a, b, c, and d are the same as GACC pairs.

(f) RACC pairs for clause a, (5, 13), (6, 14), (7, 15).
RACC pairs for clause b, (9, 13), (10, 14), (11, 15).
RACC pairs for clause c, (2, 4), (6, 8), (10, 12).
RACC pairs for clause d, (3, 4), (7, 8), (11, 12).

76

(g) GICC tuples for a are:
{4, 8} × {12, 16} for p = F ; {1, 2, 3} × {9, 10, 11} for p = T .
GICC tuples for b are:
{4, 12} × {8, 16} for p = F ; {1, 2, 3} × {5, 6, 7} for p = T .
GICC tuples for c are:
{13, 14} × {15, 16} for p = F ; {1, 5, 9} × {3, 7, 11} for p = T .
GICC tuples for d are:
{13, 15} × {14, 16} for p = F ; {1, 5, 9} × {2, 6, 10} for p = T .

(h) RICC tuples for a are:
(4, 12), (8, 16) for p = F ; (1, 9), (2, 10), (3, 11) for p = T .
RICC tuples for b are:
(4, 8), (12, 16) for p = F ; (1, 5), (2, 6), (3, 7) for p = T .
RICC tuples for c are:
(13, 15), (14, 16) for p = F ; (1, 3), (5, 7), (9, 11) for p = T .
RICC tuples for d are:
(13, 14), (15, 16) for p = F ; (1, 2), (5, 6), (9, 10) for p = T .

77

Solution:
Solution for (viii), p = (¬a ∧ ¬b) ∨ (a ∧ ¬c) ∨ (¬a ∧ c)

(a) Clauses are a, b, c.

(b) pa = b ∨ c
pb = ¬a ∧ ¬c
pc = a ∨ b

(c) Note: Blank cells represent values of ‘F’.

a b c p pa pb pc
1 T T T T T

2 T T F T T T

3 T F T T T

4 T F F T T

5 F T T T T T

6 F T F T T T

7 F F T T T

8 F F F T T

(d) GACC pairs for clause a are: {1, 2, 3} × {5, 6, 7}.
GACC pair for clause b is: (6, 8).
GACC pairs for clause c are: {1, 3, 5} × {2, 4, 6}.

(e) CACC pairs for clause a are:, (1, 5), (1, 7), (2, 6), (3, 5), (3, 7).
The CACC pair for clause b is the same as GACC pair.
CACC pairs for clause c are: (1, 2), (1, 4), (3, 2), (3, 4), (5, 6).

(f) RACC pair for clause a is: (1, 5), (2, 6), (3, 7).
The RACC pair for clause b is the same as CACC pair.
RACC pairs for clause c are: (1, 2), (3, 4), (5, 6).

(g) GICC tuples for clause a are: no feasible pair for p = F ; (4, 8) for p = T .
GICC tuples for clause b are: (1,3) for p = F ; (2, 4), (2, 7), (5, 4), (5, 7) for p = T .
GICC tuples for clause c are: no feasible pair for p = F ; (7, 8) for p = T .

(h) RICC tuples for clauses a and c are same as GICC tuples.
RICC tuples for clause b are: (1, 3) for p = F ; (2, 4), (5, 7) for p = T .

78

Solution for (ix), p = a ∨ b ∨ (c ∧ d)

Instructor Solution Only

79

Solution for (x), p = (a ∧ b) ∨ (b ∧ c) ∨ (a ∧ c)

Instructor Solution Only

80

5. Show that GACC does not subsume PC when the exclusive or operator is used. Assume
p = a⊕ b.

Instructor Solution Only Worked out by Chris Yeung, 21-Oct-2013. Corrected by Yue
Zhang, 27-May-2020.

6. In Section 8.1.6, we introduced the example p = (a ∨ b) ∧ c, and provided expanded versions
of the clauses using program variables. We then gave specific values to satisfy PC. We also
gave truth values to satisfy CC. Find values for the program variables given to satisfy CC;
that is, refine the abstract tests into concrete test values.

Instructor Solution Only

7. Refine the GACC, CACC, RACC, GICC, and RICC coverage criteria so that the constraints
on the minor clauses are made more formal.

Solution:
Solution: We’ll start with GACC, and add more constraints we we proceed to RACC. Then,
we’ll repeat the process for GICC and RICC. The goal here is to help students by giving a
more explicit explanation of the test requirements.

We assume p is the predicate, ci is the major clause, cj , j 6= i are the minor clauses, and pci
is the conditions under which ci determines p.

For each i, GACC has two test requirements: ci = T ∧ pci = T and ci = F ∧ pci = T . Note
that the values of the minor clauses cj may differ between the two tests.

For each i, CACC has two test requirements: ci = T ∧ pci = T and ci = F ∧ pci = T .
Additionally, the value of p resulting from the first test must differ from the value of p resulting
from the second. Note that the values of the minor clauses cj may differ between the two tests.

For each i, RACC has two test requirements: ci = T ∧ pci = T and ci = F ∧ pci = T .
Additionally, ci is the only difference between the two tests. That is, the values of the minor
clauses cj must be identical on the two tests.

For each i, GICC has two pairs of test requirements:

Pair 1: ci = T ∧ pci = F ∧ p = T . ci = F ∧ pci = F ∧ p = T .

Pair 2: ci = T ∧ pci = F ∧ p = F . ci = F ∧ pci = F ∧ p = F .

The minor clauses cj may differ between the two tests. Often, one of the pairs is infeasible.

For each i, RICC has two pairs of test requirements:

Pair 1: ci = T ∧ pci = F ∧ p = T . ci = F ∧ pci = F ∧ p = T .

Pair 2: ci = T ∧ pci = F ∧ p = F . ci = F ∧ pci = F ∧ p = F .

Additionally, ci is the only difference between the two tests in Pair 1 and the two tests in
Pair 2. That is, the values of the minor clauses cj must be identical for the two tests in Pair
1 and identical for the two tests in Pair 2. Again, one of the pairs is often infeasible.

81

8. (Challenging!) Find a predicate and a set of additional constraints so that CACC is infea-
sible with respect to some clause, but GACC is feasible.

Instructor Solution Only

82

Exercises, Section 8.2

1. Use predicates (i) through (iv) to answer the following questions.

i. f = abc̄ + ābc̄
ii. f = āb̄c̄d̄ + abcd

iii. f = ab + ab̄c + āb̄c
iv. f = āc̄d̄ + c̄d + bcd

(a) Draw the Karnaugh maps for f and f̄ .
(b) Find the nonredundant prime implicant representation for f and f̄ .
(c) Give a test set that satisfies Implicant Coverage (IC) for f .
(d) Give a test set that satisfies Multiple Unique True Points (MUTP) for f .
(e) Give a test set that satisfies Corresponding Unique True Point and Near False Point

Pair Coverage (CUTPNFP) for f .
(f) Give a test set that satisfies Multiple Near False Points (MNFP) for f .
(g) Give a test set that is guaranteed to detect all faults in figure 8.2.

83

Solution:
Solution for f = abc̄ + ābc̄

(a) Karnaugh map for f :

a, b
00 01 11 10

0 1 1
c 1

Karnaugh map for f̄ :

a, b
00 01 11 10

0 1 1
c 1 1 1 1 1

(b) Nonredundant prime implicant representation for f :
f = bc̄

Nonredundant prime implicant representation for f̄ :
f̄ = b̄ + c
Note that f is a function of b and c only; a is irrelevant.

(c) For IC we choose the nonredundant prime implicant representations. Other choices are
possible, of course. This leaves three implicants {bc̄, b̄, c} in f and f̄ collectively. Test
set {xTF, xFT} satisfies IC. Note that the second test, which is not a unique true point,
satisfies both b̄ and c.

(d) For MUTP, see the online tool.
(e) For CUTPNFP, see the online tool.
(f) For MNFP, see the online tool.
(g) Any version of MUMCUT works; see the online tool.

84

Solution:
Solution for f = āb̄c̄d̄ + abcd

(a) Karnaugh map for f :

a, b
00 01 11 10

00 1
cd 01

11 1
10

Karnaugh map for f̄ :

a, b
00 01 11 10

00 1 1 1
cd 01 1 1 1 1

11 1 1 1
10 1 1 1 1

(b) Nonredundant prime implicant representation for f (Note: as given):
f = āb̄c̄d̄ + abcd

Nonredundant prime implicant representation for f̄ :
f̄ = ab̄ + bc̄ + cd̄ + ād

(c) For IC we choose the nonredundant prime implicant representations. Other choices are
possible, of course. This leaves six implicants {āb̄c̄d̄, abcd, ab̄, bc̄, cd̄, ād} in f and f̄
collectively. Test set {FFFF, TTTT, TFTF, FTFT} satisfies IC. Note that the third
and fourth tests, which are not unique true points, each satisfy two implicants.

(d) For MUTP, see the online tool.
(e) For CUTPNFP, see the online tool.
(f) For MNFP, see the online tool.
(g) Any version of MUMCUT works; see the online tool.

85

Instructor Solution Only

86

Instructor Solution Only

87

2 Use the following predicates to answer questions (a) through (f).

• W = (b ∧ ¬c ∧ ¬d)
• X = (b ∧ d) ∨ (¬b¬d)
• Y = (a ∧ b)
• Z = (¬b ∧ d)

(a) Draw the Karnaugh map for the predicates. Put ab on the top and cd on the side.
Label each cell with W , X, Y , and/or Z as appropriate.

Instructor Solution Only
(b) Find the minimal DNF expression that describes all cells that have more than one

definition.

Instructor Solution Only
(c) Find the minimal DNF expression that describes all cells that have no definitions.

Instructor Solution Only
(d) Find the minimal DNF expression that describes X ∨ Z.

Instructor Solution Only
(e) Give a test set for X that uses each prime implicant once.

Instructor Solution Only

3 Consider “stuck-at” faults, where a literal is replaced by the constant true or the constant
false. These faults do not appear in the fault list given in Table 8.1 or the corresponding
fault detection relationships given in Figure 8.2.

(a) Which fault dominates the stuck-at fault for the constant true? That is, find the fault
in figure 8.2 such that if a test set is guaranteed to detect every occurrence of that fault,
then the test set also detects all stuck-at true faults. Explain your answer.

Solution:
Detecting all LOF (Literal Omission) faults guarantees detecting all stuck-at true faults.
The reason is that omitting a literal is logically the same as replacing a literal by the
constant true.

(b) Which fault dominates the stuck-at fault for the constant false? That is, find the fault
in figure 8.2 such that if a test set is guaranteed to detect every occurrence of that fault,
then the test set also detects all stuck-at false faults. Explain your answer.

Instructor Solution Only

88

Exercises, Section 8.3

1. Complete and run the tests to satisfy PC for the Thermostat class.

Instructor Solution Only

2. Complete and run the tests to satisfy CC for the Thermostat class.

Instructor Solution Only

3. Complete and run the tests to satisfy CACC for the Thermostat class.

Instructor Solution Only

4. For the Thermostat class, check the computations for how to make each major clause deter-
mine the value of the predicate by using the online tool, then the tabular method.

Instructor Solution Only

5. Answer the following questions for the method checkIt() below:

public static void checkIt (boolean a, boolean b, boolean c)

{

if (a && (b || c))

{

System.out.println ("P is true");

}

else

{

System.out.println ("P isn’t true");

}

}

(a) Transform checkIt() to checkItExpand(), a method where each if statement tests
exactly one boolean variable. Instrument checkItExpand() to record which edges are
traversed. (“print” statements are fine for this.)

Instructor Solution Only
(b) Derive a GACC test set T1 for checkIt(). Derive an Edge Coverage test set T2 for

checkItExpand(). Build T2 so that it does not satisfy GACC on the predicate in
checkIt().

Instructor Solution Only
(c) Run both T1 and T2 on both checkIt() and checkItExpand().

Instructor Solution Only

Output of the program:

true true true

checkIt(): 1: P is true

checkItExpand(): 1: P is true

true true false

checkIt(): 1: P is true

checkItExpand(): 1: P is true

true false true

checkIt(): 1: P is true

89

checkItExpand(): 2: P is true

true false false

checkIt(): 3: P isn’t true

checkItExpand(): 3: P isn’t true

false true true

checkIt(): 3: P isn’t true

checkItExpand(): 4: P isn’t true

false true false

checkIt(): 3: P isn’t true

checkItExpand(): 4: P isn’t true

false false true

checkIt(): 3: P isn’t true

checkItExpand(): 4: P isn’t true

false false false

checkIt(): 3: P isn’t true

checkItExpand(): 4: P isn’t true

6. Answer the following questions for the method twoPred() below:

public String twoPred (int x, int y)

{

boolean z;

if (x < y)

z = true;

else

z = false;

if (z && x+y == 10)

return "A";

else

return "B";

}

(a) List test inputs for twoPred() that achieve Restricted Active Clause Coverage (RACC).

Instructor Solution Only
(b) List test inputs for twoPred() that achieve Restricted Inactive Clause Coverage (RICC).

Instructor Solution Only

7. Answer the following questions for the program fragments below:

fragment P: fragment Q:

if (A || B || C) if (A)

{ {

m(); m();

} return;

return; }

if (B)

{

m();

return;

}

if (C)

{

m();

}

90

(a) Give a GACC test set for fragment P. (Note that GACC, CACC, and RACC yield
identical test sets for this example.)

Solution:
Note that each clause must be true with the other clauses false, and then all of the
clauses must be false, thereby yielding 4 tests (numbered 4, 6, 7, 8 in the usual truth
table scheme): TGACC = {(T, F, F), (F, T, F), (F, F, T), (F, F, F)}

(b) Does the GACC test set for fragment P satisfy Edge Coverage on fragment Q?

Solution:
Yes.

(c) Write down an Edge Coverage test set for fragment Q. Make your test set include as
few tests from the GACC test set as possible.

Solution:
Eight possible answers exist. All answers must include (F, F, F) and (F, F, T), both of
which are in the GACC tests. The first misses all calls to m(); and the second reaches
the third call. To reach the first call, A must be True but B and C can have any value
(four possibilities). To reach the second call, A must be False and B must be true. With
“don’tcare” values, we can list the four tests as:
TEDGE = {(T,−,−), (F, T,−), (F, F, T), (F, F, F)}

All the possible answers are:
TEDGE:1 = {(T, T, T), (F, T, T), (F, F, T), (F, F, F)}
TEDGE:2 = {(T, T, F), (F, T, T), (F, F, T), (F, F, F)}
TEDGE:3 = {(T, F, T), (F, T, T), (F, F, T), (F, F, F)}
TEDGE:4 = {(T, F, F), (F, T, T), (F, F, T), (F, F, F)} (1 in the GACC test)
TEDGE:5 = {(T, T, T), (F, T, F), (F, F, T), (F, F, F)} (1 in the GACC test)
TEDGE:6 = {(T, T, F), (F, T, F), (F, F, T), (F, F, F)} (1 in the GACC test)
TEDGE:7 = {(T, F, T), (F, T, F), (F, F, T), (F, F, F)} (1 in the GACC test)
TEDGE:8 = {(T, F, F), (F, T, F), (F, F, T), (F, F, F)} (2 in the GACC tests)

8. For the patternIndex() program in Chapter 7, complete the test sets for the following
coverage criteria by filling in the “don’t care” values. Make sure to ensure reachability. Then
derive the expected output. Download the program, compile it, and run it with your resulting
test cases to verify correct outputs.

(a) Predicate Coverage (PC)
(b) Clause Coverage (CC)
(c) Combinatorial Coverage (CoC)
(d) Correlated Active Clause Coverage (CACC)

Instructor Solution Only

9. For the Quadratic program in Chapter 6, complete the test sets for the following coverage
criteria by filling in the “don’t care” values, ensuring reachability, and deriving the expected
output. Download the program, compile it, and run it with your resulting test cases to verify
correct outputs.

91

(a) Predicate Coverage (PC)
(b) Clause Coverage (CC)
(c) Combinatorial Coverage (CoC)
(d) Correlated Active Clause Coverage (CACC)

Instructor Solution Only

10. The program TriTyp is an old and well used example from the unit testing research literature.
Trityp is used as a teaching tool for the same reasons it has staying power in the literature:

the problem is familiar; the control structure is interesting enough to illustrate most issues;
and it does not use language features that make this analysis really hard, such as loops and
indirect references. This version of Trityp is more complicated than some, but that helps
illustrate the concepts. Trityp is a simple triangle classification program. Line numbers
were added to allow us to refer to specific decision statements in the the answers.

Use TriTyp, a numbered version of which is available on the book web site, to answer the
questions below. Only the triang() method is considered.

(a) List all predicates in the triang() method. Index them by the line numbers in the
program listing.

Instructor Solution Only
(b) Compute reachability for each of triang()’s predicates. You may abbreviate the input

variables as S1, S2, and S3.

Instructor Solution Only
(c) Many of the reachability predicates contain an internal variable (triOut). Resolve the

internal variable in terms of input variables. That is, determine what values the input
variables need to have to give triOut each possible value.

Instructor Solution Only
(d) Rewrite the reachability predicates by solving for triOut. That is, the reachability

predicates should be completely in terms of the input variables.

Instructor Solution Only
(e) Find values for each predicate to satisfy predicate coverage (PC).

Instructor Solution Only
(f) Find values for each predicate to satisfy clause coverage (CC).

Instructor Solution Only
(g) Find values for each predicate to satisfy correlated active clause coverage (CACC).

Instructor Solution Only

11. (Challenging!) For the TriTyp program, complete the test sets for the following coverage
criteria by filling in the “don’t care” values, ensuring reachability, and deriving the expected
output. Download the program, compile it, and run it with your resulting test cases to verify
correct outputs.

(a) Predicate Coverage (PC)
(b) Clause Coverage (CC)
(c) Combinatorial Coverage (CoC)

92

(d) Correlated Active Clause Coverage (CACC)

Instructor Solution Only

12. Consider the GoodFastCheap class, available on the book web site. This class implements
the old engineering joke: “Good, Fast, Cheap: Pick any two!”

(a) Develop tests that achieve RACC for the predicate in the isSatisfactory() method.
Implement these tests in JUnit.

Solution:
Access GoodFastCheapRACC.java on the book website

(b) Suppose we refactor the isSatisfactory() method as shown below:

public boolean isSatisfactory()

{

if (good && fast) return true;

if (good && cheap) return true;

if (fast && cheap) return true;

return false;

}

The RACC tests from the original method do not satisfy RACC on the refactored
method. List what is missing, and add the missing tests to the JUnit from the prior
exercise.

Instructor Solution Only
(c) Develop tests that achieve MUMCUT for the predicate in the isSatisfactory()

method of the GoodFastCheap class. Implement these tests in JUnit.

Solution:
The online tool shows that tests 2, 3, 4, 5, 6, and 7 are needed for this predicate. Access
GoodFastCheapMUMCUT.java on the book website

http://www.cs.gmu.edu/~offutt/softwaretest/java/GoodFastCheapRACC.java
http://www.cs.gmu.edu/~offutt/softwaretest/java/GoodFastCheapMUMCUT.java

93

Exercises, Section 8.4

1. Consider the remove() method from the Java Iterator interface. The remove() method
has a complex precondition on the state of the Iterator, and the programmer can choose
to detect violations of the precondition and report them as IllegalStateException.

(a) Formalize the precondition.

Instructor Solution Only

(b) Find (or write) an implementation of an Iterator. The Java Collection classes are a
good place to search.

Instructor Solution Only

(c) Develop and run CACC tests on the implementation.

Instructor Solution Only

94

Exercises, Section 8.5

1. For the Memory Seat finite state machine, complete the test sets for the predicate coverage
criterion (PC) by satisfying the predicates, ensuring reachability, and computing the expected
output.

Solution:
The Memory Seat FSM has five states and 24 transitions. For each transition, we give the
transition, the predicate, the prefix values, and the truth assignments needed to satisfy the
criterion.

(a) Transition: 1 −→ 2
Predicate: Button2 ∧ (Gear = Park ∨ ignition = off)
Prefix: values: Gear = Park, Button1

Coverage Criteria Test Case Values P Expected Output
(Post-state)

Predicate coverage Button2 ∧ Gear = Park T 2
Button1 ∧ Gear = Park F 1

(b) Transition: 1 −→ 3
Predicate: sideMirrors ∧ ignition = on
Prefix values: Gear = Park, Button1

Coverage Criteria Test Case Values P Expected Output
(Post-state)

Predicate coverage sideMirrors ∧ ignition = on T 3
sideMirrors ∧ ignition = off F 1

(c) Pre-state: 1 −→ 3
Predicate: seatBottom ∧ ignition = on
Prefix values: Gear = Park, Button1

Coverage Criteria Test Case Values P Expected Output
(Post-state)

Predicate coverage seatBottom ∧ ignition = on T 3
seatBottom ∧ ignition = off F 1

(d) Pre-state: 1 −→ 3
Predicate: lumbar ∧ ignition = on
Prefix values: Gear = Park, Button1

Coverage Criteria Test Case Values P Expected Output
(Post-state)

Predicate coverage lumbar ∧ ignition = on T 3
lumbar ∧ ignition = off F 1

95

(e) Pre-state: 1 −→ 3
Predicate: seatBack ∧ ignition = on
Prefix values: Gear = Park, Button1

Coverage Criteria Test Case Values P Expected Output
(Post-state)

Predicate coverage seatBack ∧ ignition = on T 3
seatBack ∧ ignition = off F 1

(f) Pre-state: 2 −→ 1
Predicate: Button1 ∧ (Gear = Park ∨ ignition = off)
Prefix values: Gear = Park, Button2

Coverage Criteria Test Case Values P Expected Output
(Post-state)

Predicate coverage Button1 ∧ Gear = Park T 1
Button2 ∧ Gear = Park F 2

(g) Pre-state: 2 −→ 3
Predicate: sideMirrors ∧ ignition = on
Prefix values: Gear = Park, Button2

Coverage Criteria Test Case Values P Expected Output
(Post-state)

Predicate coverage sideMirrors ∧ ignition = on T 3
sideMirrors ∧ ignition = off F 2

(h) Pre-state: 2 −→ 3
Predicate: seatBottom ∧ ignition = on
Prefix values: Gear = Park, Button2

Coverage Criteria Test Case Values P Expected Output
(Post-state)

Predicate coverage seatBottom ∧ ignition = on T 3
seatBottom ∧ ignition = off F 2

(i) Pre-state: 2 −→ 3
Predicate: lumbar ∧ ignition = on
Prefix values: Gear = Park, Button2

Coverage Criteria Test Case Values P Expected Output
(Post-state)

Predicate coverage lumbar ∧ ignition = on T 3
lumbar ∧ ignition = off F 2

96

(j) Pre-state: 2 −→ 3
Predicate: seatBack ∧ ignition = on
Prefix values: Gear = Park, Button2

Coverage Criteria Test Case Values P Expected Output
(Post-state)

Predicate coverage seatBack ∧ ignition = on T 3
seatBack ∧ ignition = off F 2

(k) Pre-state: 3 −→ 1
Predicate: Button1 ∧ (Gear = Park ∨ ignition = off)
Prefix values: Gear = Park, Button1, ignition=on, sideMirrors

Coverage Criteria Test Case Values P Expected Output
(Post-state)

Predicate coverage Button1 ∧ Gear = Park T 1
Button2 ∧ Gear = Park F 2

(l) Pre-state: 3 −→ 2
Predicate: Button2 ∧ (Gear = Park ∨ ignition = off)
Prefix values: Gear = Park, Button1, ignition=on, sideMirrors

Coverage Criteria Test Case Values P Expected Output
(Post-state)

Predicate coverage Button2 ∧ Gear = Park T 2
Button1 ∧ Gear = Park F 1

(m) Pre-state: 3 −→ 4
Predicate: Reset ∧ Button1 ∧ ignition = on
Prefix values: Gear = Park, Button1, ignition=on, sideMirrors

Coverage Criteria Test Case Values P Expected Output
(Post-state)

Predicate coverage Reset ∧ Button1 ∧ ignition = on T 4
Reset ∧ Button1 ∧ ignition = off F 3

(n) Pre-state: 3 −→ 5
Predicate: Reset ∧ Button2 ∧ ignition = on
Prefix values: Gear = Park, Button1, ignition=on, sideMirrors

Coverage Criteria Test Case Values P Expected Output
(Post-state)

Predicate coverage Reset ∧ Button2 ∧ ignition = on T 5
Reset ∧ Button2 ∧ ignition = off F 3

97

(o) Pre-state: 4 −→ 1
Predicate: ignition = off
Prefix values: Gear = Park, Button1, ignition = on, sideMirrors, Reset and Button1

Coverage Criteria Test Case Values P Expected Output
(Post-state)

Predicate coverage ignition = off T 1
ignition = on F 4

(p) Pre-state: 4 −→ 3
Predicate: sideMirrors ∧ ignition = on
Prefix values: Gear = Park, Button1, ignition = on, sideMirrors, Reset and Button1

Coverage Criteria Test Case Values P Expected Output
(Post-state)

Predicate coverage sideMirrors ∧ ignition = on T 3
sideMirrors ∧ ignition = off F 1

(q) Pre-state: 4 −→ 3
Predicate: seatBottom ∧ ignition = on
Prefix values: Gear = Park, Button1, ignition = on, sideMirrors, Reset and Button1

Coverage Criteria Test Case Values P Expected Output
(Post-state)

Predicate coverage seatBottom ∧ ignition = on T 3
seatBottom ∧ ignition = off F 1

(r) Pre-state: 4 −→ 3
Predicate: lumbar ∧ ignition = on
Prefix values: Gear = Park, Button1, ignition = on, sideMirrors, Reset and Button1

Coverage Criteria Test Case Values P Expected Output
(Post-state)

Predicate coverage lumbar ∧ ignition = on T 3
lumbar ∧ ignition = off F 1

(s) Pre-state: 4 −→ 3
Predicate: seatBack ∧ ignition = on
Prefix values: Gear = Park, Button1, ignition = on, sideMirrors, Reset and Button1

Coverage Criteria Test Case Values P Expected Output
(Post-state)

Predicate coverage seatBack ∧ ignition = on T 3
seatBack ∧ ignition = off F 1

98

(t) Pre-state: 5 −→ 2
Predicate: ignition = off
Prefix values: Gear = Park, Button2, ignition = on, sideMirrors, Reset and Button2

Coverage Criteria Test Case Values P Expected Output
(Post-state)

Predicate coverage ignition = off T 2
ignition = on F 5

(u) Pre-state: 5 −→ 3
Predicate: sideMirrors ∧ ignition = on
Prefix values: Gear = Park, Button2, ignition = on, sideMirrors, Reset and Button2

Coverage Criteria Test Case Values P Expected Output
(Post-state)

Predicate coverage sideMirrors ∧ ignition = on T 3
sideMirrors ∧ ignition = off F 2

(v) Pre-state: 5 −→ 3
Predicate: seatBottom ∧ ignition = on
Prefix values: Gear = Park, Button2, ignition = on, sideMirrors, Reset and Button2

Coverage Criteria Test Case Values P Expected Output
(Post-state)

Predicate coverage seatBottom ∧ ignition = on T 3
seatBottom ∧ ignition = off F 2

(w) Pre-state: 5 −→ 3
Predicate: lumbar ∧ ignition = on
Prefix values: Gear = Park, Button2, ignition = on, sideMirrors, Reset and Button2

Coverage Criteria Test Case Values P Expected Output
(Post-state)

Predicate coverage lumbar ∧ ignition = on T 3
lumbar ∧ ignition = off F 2

(x) Pre-state: 5 −→ 3
Predicate: seatBack ∧ ignition = on
Prefix values: Gear = Park, Button2, ignition = on, sideMirrors, Reset and Button2

Coverage Criteria Test Case Values P Expected Output
(Post-state)

Predicate coverage seatBack ∧ ignition = on T 3
seatBack ∧ ignition = off F 2

99

2. For the Memory Seat finite state machine, complete the test sets for the correlated active
clause coverage criterion (CACC) by satisfying the predicates, ensuring reachability, and
computing the expected output.

Instructor Solution Only

100

3. For the Memory Seat finite state machine, complete the test sets for the general inactive
active clause coverage criterion (GICC) by satisfying the predicates, ensuring reachability,
and computing the expected output.

Instructor Solution Only

101

4. Redraw Figure 8.7 to have fewer transitions, but more clauses. Specifically, nodes 1, 2, 4, and
5 each has four transitions to node 3. Rewrite these transitions to have only one transition
from each of nodes 1, 2, 4, and 5 to node 3, and the clauses are connected by ORs. Then
derive tests to satisfy CACC for the four resulting predicates. (You can omit the other
predicates.) Then derive tests to satisfy CACC for the resulting predicates. How do these
tests compare with the tests derived from the original graph?

Instructor Solution Only

5. Consider the following deterministic finite state machine:

Current State Condition Next State

Idle a ∨ b Active

Active a ∧ b Idle

Active ¬b WindDown

WindDown a Idle

(a) Draw the finite state machine.

Instructor Solution Only
(b) This machine does not specify which conditions cause a state to transition back to

itself. However, these conditions can be derived from the existing conditions. Derive
the conditions under which each state will transition back to itself.

Instructor Solution Only
(c) Find CACC tests for each transition from the Active state (including the transition

from Active to Active).

Instructor Solution Only

6. Pick a household appliance such as a watch, calculator, microwave, VCR, clock-radio or
programmable thermostat. Draw the FSM that represents your appliance’s behavior. Derive
abstract tests to satisfy Predicate Coverage, Correlated Active Clause Coverage, and General
Inactive Clause Coverage. (An abstract test is in terms of the model, not the implementation.)

Instructor Solution Only

7. Implement the memory seat FSM. Design an appropriate input language to your imple-
mentation and turn the tests derived for question 1, 2, and 3 into test scripts. Run the
tests.

Instructor Solution Only

102

Chapter 9

Exercises, Section 9.1.1

1. Consider how often the idea of covering nodes and edges pops up in software testing. Write
a short essay to explain this.

Instructor Solution Only

2. Just as with graphs, it is possible to generate an infinite number of tests from a grammar.
How and what makes this possible?

Instructor Solution Only

103

Exercises, Section 9.1.2

1. Define mutation score.

Instructor Solution Only

2. How is the mutation score related to coverage from Chapter 5?

Instructor Solution Only

3. Consider the stream BNF in Section 9.1.1 and the ground string “B 10 06.27.94.” Give
three valid and three invalid mutants of the string.

Instructor Solution Only

4. Consider the following BNF:

A ::= O B | O M | O B M

O ::= "w" | "x" | "s" | "m"

B ::= "i" | "f" | "c" | "r"

M ::= "o" | "t" | "p" | "a" | "h"

Solution:
Solution corrected by Po Shun Liu, George Mason, December 2017.

(a) How many nonterminal symbols are in the grammar? Solution:
4

(b) How many terminal symbols are in the grammar? Solution:
13

(c) Write two strings that are valid according to the BNF. Solution:
116 possible strings, including: wio, xf

(d) For each of your two strings, give two valid mutants of the string. Solution:
Dozens for each string.
wio −→ wit, mio
xr −→ xi, sf

(e) For each of your two strings, give two invalid mutants of the string. Solution:
Thousands for each string.
wio −→ wir, pio
xr −→ fr, xm

5. Consider the following BNF:

P ::= I D Y | I Y D | D I Y | D Y I | Y I D | Y D I

I ::= "j" | "s"

D ::= "9" | "21"

Y ::= "0" | "4"

104

Solution:
Solution corrected December 2017.

(a) How many nonterminal symbols are in the grammar? Instructor Solution Only

(b) How many terminal symbols are in the grammar? Instructor Solution Only

(c) Write two strings that are valid according to the BNF. Instructor Solution Only

(d) For each of your two strings, give two valid mutants of the string. Instructor Solution
Only

(e) For each of your two strings, give two invalid mutants of the string. Instructor Solu-
tion Only

105

Exercises, Section 9.2

1. Provide reachability conditions, infection conditions, propagation conditions, and test case
values to kill mutants 2, 4, 5, and 6 in Figure 9.1.

Instructor Solution Only

2. Answer questions (a) through (d) for the mutant on line 5 in the method findVal().

(a) If possible, find test inputs that do not reach the mutant.

Solution:
findVal: The mutant is always reached, even if x = null.

(b) If possible, find test inputs that satisfy reachability but not infection for the mutant.

Solution:
findVal: Infection always occurs, even if x = null, because i always has the wrong
value after initialization in the loop.

(c) If possible, find test inputs that satisfy reachability and infection, but not propagation
for the mutant.

Solution:
findVal: As long as the last occurrence of val isn’t at numbers[0], the correct output is
returned. Examples are: (numbers, val) = ([1, 1], 1) or ([-1, 1], 1) or (null,
0).

(d) If possible, find test inputs that strongly kill the mutants.

Solution:
findVal: Any input with val only in numbers[0] works. An example is: (numbers,

val) = ([1, 0], 1)

/**

* Find last index of element

*

* @param numbers array to search

* @param val value to look for

* @return last index of val in numbers; -1 if absent

* @throws NullPointerException if numbers is null

*/

1. public static int findVal(int numbers[], int val)

2. {

3. int findVal = -1;

4.

5. for (int i=0; i<numbers.length; i++)

5’. // for (int i=(0+1); i<numbers.length; i++)

6. if (numbers [i] == val)

7. findVal = i;

8. return (findVal);

9. }

3. Answer questions (a) through (d) for the mutant on line 6 in the method sum().

(a) If possible, find test inputs that do not reach the mutant.

Instructor Solution Only
(b) If possible, find test inputs that satisfy reachability but not infection for the mutant.

Instructor Solution Only

106

(c) If possible, find test inputs that satisfy reachability and infection, but not propagation
for the mutant.

Instructor Solution Only
(d) If possible, find test inputs that strongly kill the mutants.

Instructor Solution Only

/**

* Sum values in an array

*

* @param x array to sum

*

* @return sum of values in x

* @throws NullPointerException if x is null

*/

1. public static int sum(int[] x)

2. {

3. int s = 0;

4. for (int i=0; i < x.length; i++) }

5. {

6. s = s + x[i];

6’. // s = s - x[i]; //AOR
7. }

8. return s;

9. }

4. Refer to the patternIndex() method in the PatternIndex program in Chapter 7. Consider
Mutant A and Mutant B given below. Implementations are available on the book website in
files PatternIndexA.java and PatternIndexB.java.

while (isPat == false && isub + patternLen - 1 < subjectLen) // Original

while (isPat == false && isub + patternLen - 0 < subjectLen) // Mutant A

isPat = false; // Original (Inside the loops, not the declaration)

isPat = true; // Mutant B

Answer the following questions for each mutant.

Instructor Solution Only

(a) If possible, design test inputs that do not reach the mutants.

Instructor Solution Only
(b) If possible, design test inputs that satisfy reachability but not infection for the mu-

tants.

Instructor Solution Only
(c) If possible, design test inputs that satisfy reachability and infection, but not propa-

gation for the mutants.

Instructor Solution Only
(d) If possible, design test inputs that strongly kill the mutants.

Instructor Solution Only

5. Why does it make sense to remove ineffective test cases?

Instructor Solution Only

107

6. Define 12 mutants for the following method cal() using the effective mutation operators
given previously. Try to use each mutation operator at least once. Approximately how many
mutants do you think there would be if all mutants for cal() were created?

public static int cal (int month1, int day1, int month2,

int day2, int year)

{

//***

// Calculate the number of Days between the two given days in

// the same year.

// preconditions : day1 and day2 must be in same year

// 1 <= month1, month2 <= 12

// 1 <= day1, day2 <= 31

// month1 <= month2

// The range for year: 1 ... 10000

//***

int numDays;

if (month2 == month1) // in the same month

numDays = day2 - day1;

else

{

// Skip month 0.

int daysIn[] = {0, 31, 0, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

// Are we in a leap year?

int m4 = year % 4;

int m100 = year % 100;

int m400 = year % 400;

if ((m4 != 0) || ((m100 ==0) && (m400 != 0)))

daysIn[2] = 28;

else

daysIn[2] = 29;

// start with days in the two months

numDays = day2 + (daysIn[month1] - day1);

// add the days in the intervening months

for (int i = month1 + 1; i <= month2-1; i++)

numDays = daysIn[i] + numDays;

}

return (numDays);

}

Instructor Solution Only

7. Define 12 mutants for the following method power() using the effective mutation operators
given previously. Try to use each mutation operator at least once. Approximately how many
mutants do you think there would be if all mutants for power() were created?

Instructor Solution Only

108

public static int power (int left, int right)

{

//**************************************

// Raises left to the power of right

// precondition : right >= 0

// postcondition: Returns left**right

//**************************************

int rslt;

rslt = left;

if (right == 0)

{

rslt = 1;

}

else

{

for (int i = 2; i <= right; i++)

rslt = rslt * left;

}

return (rslt);

}

Instructor Solution Only

8. The fundamental premise of mutation was stated as: “In practice, if the software contains
a fault, there will usually be a set of mutants that can be killed only by a test case that also
detects that fault.”

(a) Give a brief argument in support of the fundamental mutation premise.

Instructor Solution Only
(b) Give a brief argument against the fundamental mutation premise.

Instructor Solution Only

9. Try to design mutation operators that subsume Combinatorial Coverage. Why wouldn’t we
want such an operator?

Instructor Solution Only

10. Look online for the tool Jester (jester.sourceforge.net), which is based on JUnit. Based
on your reading, evaluate Jester as a mutation-testing tool.

Instructor Solution Only

11. Download and install the Java mutation tool muJava from the book website. (Direct URL:
http://cs.gmu.edu/∼offutt/mujava/) Enclose the method cal() from question 6 inside
a class, and use muJava to test cal(). Use all the operators. Design tests to kill all non-
equivalent mutants. Note that a test case is a method call to cal().

Instructor Solution Only

Instructor Solution Only

(a) How many mutants are there?

Instructor Solution Only

Instructor Solution Only

Instructor Solution Only

109

(b) How many test cases do you need to kill the non-equivalent mutants?

Instructor Solution Only
(c) What mutation score were you able to achieve before analyzing for equivalent mutants?

Instructor Solution Only
(d) How many equivalent mutants are there?

Instructor Solution Only

Instructor Solution Only

Instructor Solution Only

110

Exercises, Section 9.4

1. Translate the following SMV machine into a finite state machine.

MODULE main

#define false 0

#define true 1

VAR

x, y : boolean;

ASSIGN

init (x) := true;

init (y) := true;

next (x) := case

x & y : false;

x : true;

!x & y : false;

!x & !y : true

true : x;

esac;

next (y) := case

!x & y : false

y : true

!y : false

true : y;

esac;

Solution:
The graph should have a sequence of four states, in the order shown, with the final state
looping back to itself:

TT –> FT –> FF –> TF –> TF

2. Translate the following finite state machine into an SMV machine.

Instructor Solution Only

111

3. (Challenging!) Find or write a small SMV specification and a corresponding Java imple-
mentation. Restate the program logic in SPEC assertions. Mutate the assertions system-
atically, and collect the traces from (nonequivalent) mutants. Use these traces to test the
implementation.

Instructor Solution Only

112

Exercises, Section 9.5

1. Generate tests to satisfy TSC for the bank example grammar based on the BNF in Section
9.5.1. Try not to satisfy PDC.

Instructor Solution Only

2. Generate tests to satisfy PDC for the bank example grammar.

Instructor Solution Only

3. Consider the following BNF with start symbol A:

A ::= B"@"C"."B

B ::= BL | L

C ::= B | B"."B

L ::= "a" | "b" | "c" | ... | "y" | "z"

and the following six possible test cases:

t1 = a@a.a

t2 = aa.bb@cc.dd

t3 = mm@pp

t4 = aaa@bb.cc.dd

t5 = bill

t6 = @x.y

For each of the six tests, state whether the test sequence is either (1) “in” the BNF, and give
a derivation, or (2) sequence as “out” of the BNF, and give a mutant derivation that results
in that test. (Use only one mutation per test, and use it only one time per test.) Instructor
Solution Only

4. Provide a BNF description of the inputs to the cal() method in the homework set for
Section 9.2.2. Succinctly describe any requirements or constraints on the inputs that are
hard to model with the BNF.

Instructor Solution Only

5. Answer questions (a) through (c) for the following grammar.

val ::= number | val pair

number ::= digit+

pair ::= number op | number pair op

op ::= "+" | "-" | "*" | "/"

digit ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

Also consider the following mutated version, which adds an additional rule to the grammar:

pair ::= number op | number pair op | op number

(a) Which of the following strings can be generated by the (unmutated) grammar?

113

42

4 2

4 + 2

4 2 +

4 2 7 - *

4 2 - 7 *

4 2 - 7 * +

Instructor Solution Only
(b) Find a string that is generated by the mutated grammar, but not by the original gram-

mar.

Instructor Solution Only
(c) (Challenging!) Find a string whose generation uses the new rule in the mutant gram-

mar, but is also in the original grammar. Demonstrate your answer by giving the two
relevant derivations.

Instructor Solution Only

6. Answer questions (a) and (b) for the following grammar.

phoneNumber ::= exchangePart dash numberPart

exchangePart ::= special zeroOrSpecial ordinary

numberPart ::= ordinary4

ordinary ::= zero | special | other

zeroOrSpecial ::= zero | special

zero ::= "0"

special ::= "1" | "2"

other ::= "3" | "4" | "5" | "6" | "7" | "8" | "9"

dash ::= "-"

(a) Classify the following as either phoneNumbers (in the grammar). For numbers not in
the grammar, state why not.

• 123-4567
• 012-3456
• 109-1212
• 246-9900
• 113-1111

Instructor Solution Only
(b) Consider the following mutation of the grammar:

exchangePart ::= special ordinary other

If possible, give a string that appears in the mutated grammar but not in the original
grammar, another string that is in the original but not the mutated, and a third string
that is in both.

Instructor Solution Only

114

7. Use the web application program calculate to answer the following questions. calculate

is on the second author’s website (at https://cs.gmu.edu:8443/offutt/servlet/calculate as of
this writing).

(a) Analyze the inputs for calculate and determine and write the grammar for the inputs.
You can express the grammar in BNF, an XML schema, or another form if you think
it’s appropriate. Submit your grammar.

Instructor Solution Only

Modeling the Result and Length text boxes may be non-intuitive to some testers. They
are clearly designed as ouput fields, yet the UI implements them as text boxes, allowing
users to enter values. Thus they should be part of the grammar. This is a valuable
example to discuss in class of something that is easy to overlook with “happy path”
tests. Moreover, if the test designer shares the grammar with the software developers,
the developers may question the Result and Length elements in the grammar and
decide to change the software on the spot; becoming an opportunity to find faults in
the software before running any tests.

(b) Use the mutation ideas in this chapter to generate tests for calculate. Submit all
tests; be sure to include expected outputs.

Instructor Solution Only
(c) Automate your tests using a web testing framework such as HttpUnit or Selenium.

Submit screen printouts of any anomalous behavior.

Instructor Solution Only

8. Java provides a package, java.util.regex, to manipulate regular expressions. Write a
regular expression for URLs and then evaluate a set of URLs against your regular expression.
This assignment involves programming, since input structure testing without automation is
pointless.

(a) Write (or find) a regular expression for a URL. Your regular expression does not need
to be so general that it accounts for every possible URL, but give your best effort (for
example "*" will not be considered a good effort). You are strongly encouraged to do
some web surfing to find some candidate regular expressions. One suggestion is to visit
the Regular Expression Library.

Instructor Solution Only
(b) Collect at least 20 URLs from a small web site (such as course web pages). Use the

java.util.regex package to validate each URL against your regular expression.

Instructor Solution Only
(c) Construct a valid URL that is not valid with respect to your regular expression (and

show this with the appropriate java.util.regex call). If you have done an outstanding
job in part 1, explain why your regular expression does not have any such URLs.

Instructor Solution Only

9. Why is the equivalent mutant problem solvable for BNF grammars but not for program-based
mutation? (Hint: The answer to this question is based on some fairly subtle theory.)

Instructor Solution Only

115

Changes to the Solution Manual

This section documents changes so that users can download a fresh copy and quickly locate
additions and corrections.

