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A SEMIREDUCIBLE APPROACH TO THE 5D GRAVITY.

By John P. CONSTANTOPOULOS and Antony A. KRITIKOS.

Introduction. The possibility that matter has a purely geometric origin [13]%)
is an attractive idea, which has found one of its best formulations in the five di-
mensional theories of (variable) gravity (shortly 5D gravity). Originally the fifth
dimension was associated with the variable mass of the particle [29], [30], but the
theory itself can be worked out quite independently of this hypothesis. In particu-
lar, the fifth dimension is not required to be compact and hence unobservable and it
can be regarded as a convenient device which induces “matter” in the four dimen-
sional Universe of our perception. In fact, the extra terms in the 5D Einstein tensor,
which depend on the fifth scalar factor or on the derivatives of the fifth coordinate
can be suitably identified in many cases, with the “matter density” and “pressure”.
The aforementioned procedure prescribes a perfect fluid and the theory is compatible
with both the Newton’s law of motion and the first law of thermodynamics (see [33],
[34], [35] for details). Furthermore it has been recently argued that theories of this
type are equivalent or almost equivalent to brane-world theories [25]. Therefore, a
re-examination of such theories from a rather different point of view is in order. In
particular, it is interesting to notice that although there are many known solutions of
the 5D gravity, an overall classification scheme of these solutions, which permits an
immediate more or less comparison with 4D physics, is missing.

The main objective of this paper is a reconsideration of the mathematical back-
ground of the 5D gravity and the introduction of an effective and convenient classifica-
tion scheme. The possibility of such a scheme is hinted in a recent work on the Einstein
spaces of any dimension n > 4, which are of the semireducible type [10]. In this con-
text we recall that semireducible spaces form a rather particular class of Riemannian
spaces (see for details [19], [20}). Here, the way semireducibility is involved in 5D
gravity (one possibility is through those solutions that happen to be V(0)-spaces) is
investigated and the situation is further clarified. We stress that our approach is dif-
ferent from that of Romero et al who use the Campbell-Magaard theorem [27]. Here,
emphasis is given into writing down the 5D metric into an appropriate semireducible
form in a way such that the field equations of the 5D gravity are considerably sim-
plified. This approach enables us to treat effectively the non-vanishing off-diagonal
terms, which are now hidden into an appropriate diagonal block, and in addition to
identify those solutions, which are of the V(0)-type. In the first case a comparison of
our approach to that of the “splitting technique” of Ponce de Leon [26), is of some
interest. In our case, we are led into a simplified set of field equations while in his
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case “the most general induced energy-momentum tensor” is obtained. However, our
second goal, namely the identification of the solutions of the V(0)-type for the various
semireducible types, illuminates an essentially new phenomenon, which is character-
istic of any multidimensional theory of gravity (n > 4). We call this phenomenon the
inertial degeneracy of the nD vacuum and we demonstrate cxplicitly its existence (in
the case of the 5D gravity) in §3. Last but not least an overall classification scheme
is presented in §4.

§ 1. Semireducible Riemannian spaces. A Ricmannian space will be called
semireducible, if to a suitably chosen coordinate system, its line-element ds? can be
written in the form

(1.1) ds® = ds§ + atdst + ... +rr§dsg.
where 7, # cog (@ # 3, ¢ = const.) and
ds? = g;;,dreledydr. (a=0,1,...q).

Here, each one of the appended metrics ds? (a = 0,1,...,q) depends only on the
corresponding internal coordinates {z,}, while the functions ¢, depend only on the
coordinates {xg} of the fundamental part, or kernel, ds2, of the above line element. If
one at least of the o, is constant, the space is said to be reducible or decomposable.
The above analysis is called the g-analysis of the semireducible space V,, (n > 2).
The g-analysis considered above is not unique, in general (see [19], [20]). However,
assuming that 1-dimensional appended metrics are permissible, we may conclude that
a unique ¢mq: is always possible (1 < gmer < n — 1), but again the corresponding
Gmaz-analysis need not be unique. Nevertheless ¢,,.. is a characteristic invariant of
the semireducible space under consideration. In all cases, the particular g-analysis in
use, implies a certain decomposition of the dimension, according to the formula

q
(1.2) n:p—l—Zna,
a=1

where p is the dimension of the kernel and ¢ is the length of the analysis under
consideration. The n, (@ = 1,...¢), are the dimensionalities of the appended metrics
or slices of our analysis. Clearly, 1 <n, <n —p.

Equation (1.2) provides a convenient classification scheme for any g-analysis. In
particular, the arbitrary g-analysis of the semireducible space V,,, is completely pre-
scribed by the integer p (p < n) and by the partition of the integer n — p. The
length of the partition of n — p is obviously the integer q. The rank of the partition?
is also important for the characterization of the g-analysis under consideration. In
the following we shall not use the Frobenius nomenclature for partitions, being too
complicated although very powerful. Instead, we shall use the sequence

(1.3) {pk1,2(ka).. . Ky},

2) See Littlewood {22}, p. 60,
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where the first integer is, in all cases, the dimension of the kernel and the rest rep-
resents, the dimensions of the slices in descending order. Repetitions are explicitly
illustrated, using brackets. For example in the case of (1.3) we have two distinct
slices of the same dimension ky. Obviously, we may redefine the kernel by absorbing
a certain number of slices in it. The end product of this procedure is that some of
the internal coordinates change status becoming coordinates of the kernel and they
can be regarded as dummy, since they do not appear in the o, of the new analysis,
which is necessarily a (¢ — k)-analysis (k < ¢). Hence, the resulting new analysis
is reducible’ or degenerate. Nevertheless, this possibility is important as far as the
multidimensional theories of gravity are concerned, since it indicates that we may use
two “different” sets of field equations in order to get the same solution.

The interesting point, for our considerations, is that in all cases the field equations
are considerably simplified to the form

q
0 - R
(14) (d) RE]) — Z a0, 1(’—a;ij-. (b) RE;) = i— gl(;l)
a=1 )
where the constants R, are given from the equations
R, %
(1.4) {c) e (ne — 1)A 10, + 0,820, + 0q anab A (og, 0p)
a

b#a

and

AQO’ = gij(T;ij.
Here, Rg?) and Rg;‘) represent the Ricci tensor of the kernel and of the various slices
respectively. The covariant derivatives refer exclusively to the kernel. In particular,
equation (1.4)(b) implies that the appended metrics are necessarily Einstein spaces
of scalar curvature R,, where the constants R, are prescribed from the solution of
the combined set of the equations.

The above equations are a special case of the equations given in [10] and they can
he immediately obtained from those, for B = 0. The tremendous simplification here
is that instead of the n-dimensional vacuum field equations of the nD gravity we have
only to solve equations (1.4){a) subject to the conditions (1.4)(c), which live in the
p-dimensional kernel of our semireducible analysis (1.1). Since p < n, in all cases, the
induced simplification is obvious. Further to this point the off-diagonal terms, which
are the headache of the multidimensional theories, can be most conveniently hidden
either in the kernel or in one of the slices of the adopted g-analysis.

§ 2. The V(K)-spaces. A special class of semireducible spaces is that of the
V(K)-spaces. The Einstein spaces of Brinkmann are a special instance of these spaces
of the type {1,n — 1} ([2], sec also [23], p.81). Some of the V(K')-spaces have been
also presented by De Vries, as solutions to the problem of finding the spaces that

3) Here the term “reducible” refers to the g-analysis under consideration and not to the underlying
space. The term degenerate means that the very same g-analysis can be written using different p
and ¢ in each case.
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admit a gradient conformal transformation [12]. Although the results of De Vries
generalize considerably the Brinkmann's solution, the geometric properties and the
identification of the V(K ')-spaces as a special class of pseudo-Riemannian spaces is due
to the systematic investigations of Solodovnikov in 1956 (see [28], [21] and references
therein). For our purposes these spaces are very interesting because they provide
almost automatically a broad class of possible solutions of the 5D gravity.

In a V(K )-space, the kernel (p > 1) is always a space of constant curvature, but
in addition the functions o, are not arbitrary any more. In fact they are determined
from the conditions (28],

- 0
(‘1) Ta:ij = —K (Ta.ggj)s

(2.1)
(b) Ai(og.0p) = —Kagay,  (a#b),

where K is a real constant. characteristic of the space under consideration. Here, A4
is the usual differential parameter of the first order, namely

A} ((Tu: (rb) = gijai”aaj”b~

We stress that equations (2.1)(a) and (2.1)(b) hold for p > 1. For p = 1 equation
(2.1)(a) is replaced hy the equation

(2.2) o+ eKo, =0, (e==%£1),

where £ indicates the sign of the 1-dimensional kernel in (1.1). In writing (2.2) we have
normalized the scaling factor of the 1-dimensional kernel. A more general expression
can be also given. The g-analysis of a V(K )-space is usually called a K -analysis or
K-factorisation of the V(K ')-space under consideration. Clearly, in a V(K )-space the
slices are quite arbitrary. Thus, a V(& )-space is the prototype of semireducible spaces
which define a ¢-structure. In our case this g-structure is completely defined by the
above cquations and for any p > 1.
For our purposes the crucial point is that the quantities

(2.3) K. = Ao, + Ko?,

are constants assuming only that equation (1.1) is a K-analysis. Following Solodovni-
kov we shall call the constant K, the conjugate curvature of the slice . We shall not
get deeper in the Mathematics of the V(K )-spaces. The only important theorems we
shall need in the sequel are:

Theorem 1. The adjoint metric of the g-analysis (1.1) (i.c. the metric which
results from (1.1) by considering 1-dimensional slices) in o V(K )-space is always that
of a space of constant curvature K.

Proof. This is an immediate consequence of an alternative definition of a V (K)-
space, used by Solodovnikov in [28]. However, a direct calculation of the curvature
tensor of the adjoint metric that is derived from the metric (1.1), using equations
{2.1)(a) and (2.1)(h) proves directly our assertion.
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Theorem 2. The semireducible metric (1.1) represents o space of constant cur-
vature K, iff

1. The g-analysis (1.1) is a K-analysis.
2. Each appended metric-form ds2 has a constant curvature Ko
(see [28} and [21] for the proof).

Theorem 3. The semireducible metric (1.1), of a V(K)-space, represents a non-
trivial Einstein space of scalar curvature n(n — 1)K, iff each appended metric-form
ds? is that of an Einstein space of the scalar curvature nq(ng — 1)K,, where K, is
the conjugate curvature of this form and at least one of the aforementioned spaces is
non-trivial (i.e. it does not represent a space of constant curvature (see [28], [9] for
details and the proof).

Theorem 4. Any solution of the 5D gravity of the partition type {1.4}, is nec-
essarily a V(0)-space. ;

Proof. From the field equations (1.4)(a) and for p = ¢ = 1, we conclude that the
function o satisfies equation (2.2) for X' = 0. In addition ¢ = 1. Hence, equation
(2.1)(b) is identically satisfied and the solution under consideration is, according to
our definition, a V (0)-space. Furthermore, we can always normalize the function o so
that the conjugate curvature is £. This completes the proof.

We may now use the above theorems and in particular Theorems 3 and 4 to
construct formally all the non-trivial solutions, which are of the type {1.4}. In fact,
the requirement that the solution is of the aforementioned type implies (K = 0) that
the solution is of the general form

2.4 ds® = edu® + v?ds?,
1

where ¢ = +1. In addition, according to Theorem 3 of this section, the appended
metric in (2.4) is necessarily a four dimensional Einstein space, the scalar curvature
of which is n)(n; — 1)Ky, where K} = ¢ and n, = 4. This information is sufficient
for our construction, i.e. it is sufficient to choose any 4-dimensional Einstein spacc
of the aforementioned curvature and then replace ds? in (2.4) by the metric of this
particular space, in order to have a solution of the 5D gravity, which is by construction
a V(0)-space. In the particular case, where the slice ds? is replaced by the Kottler
solution the Henriksen-Emslie-Wesson metric is obtained (see [34], [18]). However,
in principle, there are infinitely many candidates for the aforementioned slice, which
result into different solutions. An interesting example can be obtained by replacing
the slice in (2.4) by the solutions prescribed by Petrov in 1946 (see {23} p. 84 and [10]).
In all cases the induced 4D energy-momentum tensor prescribes the “signature” of
the 4D vacuum. In particular, for any 4D hypersurface u = up = const # 0, of the
bulk space (2.4), the induced energy-momentum tensor, up to a choice of units and
constants, is of the form
T,.(j‘*) = 7351@295?),

where ¢ = +1 prescribes the sign of the extra dimension.
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& 3. Inertial degeneracy. The main objective of this section is to reconsider
the “signature” of the 5D vacuum from an essentially diffcrent point of view. In
this context we recall that originally, in 1984 [30], the field equations of the 5D
theory incorporated a 5-dimensional energy momentum tensor 7j;. Later, in 1988,
it occurred independently to Wesson, Ponce de Leon and Coley that the appropriate
field equations are G;; = R;; = 0 rather than Gy; = Tj;, the logical conclusion being
that the 5D theory may not really need an explicit energy momentum tensor (see
for details [32]). In 2002 the 3D energy-momentum tensor reappears in a rather
formal approach by Ponce de Leon [26]. We shall call these two, essentially different,
approaches to the 5-dimensional gravity, as the W1 and the W2 versions respectively.
In the W2 version the 53D energy-momentum tensor identically vanishes, while in
the W1 version this is not the case. We shall explicitly demonstrate in the sequel
that these two versions of the 5D gravity are related by a geodesic correspondence
of the underlving spaces, which is non-trivial at least in all cases, where solutions
of the {1.4} partition type are involved. The implications of this observation are
rather important. Roughly speaking geodesics, with the exception of few trivial cases,
determine uniquely the geometry of space-time of General Relativity ({23}, chapter
7), whereas our demonstration proves that geodesics do not determine uniquely the
geometry of the 5D vacuum. There arc more than one dynamical setting (in our case
the W1 and the W2 versions of the 5D gravity of the partition type {1,4}), which
both prescribe the same geodesics, i.e. the same orbits of freely falling test-particles
and light rays. We call this phenomenon the inertial degeneracy of the 5D vacuum.

We complete our discussion giving a constructive proof for the existence of non-
trivial solutions of the 5D gravity. which manifest the aforementioned phenomenon.
In particular, we may consider the special 1-parameter family of (n + 1)-dimensional
spaces (n > 4)

. edu? u? .
3.1 ds?(\) = = + ~ds3.
B0 ®) I+ 2u2)2 " 14 2!
Here the real parameter X is quite arbitrary and u represents the additional fifth
dimension. Using Theorem 1 of §3 we can easily prove that the family (3.1) is a
family of V(K )-spaces with the constant K, of each member of the family, given hy
the expression

(3.2) K(\) = eA.

Further to this point for A = 0 we have a V(0)-space of the form (2.4), which is
a solution of the W2 version of the 5D gravity. Then we can easily prove, after some
straightforward algebra, that for each A # 0 the corresponding space of the family
(3.1) is in (local) geodesic correspondence with our aforementioned solution. Thus
we have proved directly that there is an infinity of spaces, which are in a geodesic
correspondence to a V{0)-solution of the W2 type of the 5D gravity. These spaces can
be regarded as solutions of the W1 version of the 5D gravity since their corresponding
encrgy-momentum tensor is uniquely defined by the aforementioned procedure. In
addition from equation (2.3) we can casily calculate the conjugate curvature

K,} ()\) = £,
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which is the same for all the members of the family of spaces (3.1). This is an
interesting result since it implies, as a consequence of Theorem 3, that if the A = 0
member of the family (3.1) is a {special) Einstein space then all the members of this
family are Einstein spaces and their scalar curvature is R = n(n — 1)K(\), where
K(X) is given by (3.2). We stress that in this case, as well as in the case of equation
(3.1), our solution is not just a V(0)-space with p = 1, but a class of infinitely many
distinct spaces.

§ 4. Classification of the solutions of the 5D gravity. So far we have
considered only solutions of the partition type {1,4}. However our previous analysis
and in particular Theorem 4 enable us to know exactly the partition type of solutions,
where non-trivial solutions of the V{(0)-type may exist. In particular, V(0)-solutions
of the types {2.3} and {3, 2} are necessarily spaces of constant curvature as a result of
Theorem 3. In addition solutions of the partition types, which prescribe 1-dimensional
slices cannot he non-trivial V' (0)-spaces as a result of either Theorem 3 or of Theorem
1. In the case {4. 1) this can be also proved by a direct calculation, i.e. any V (0)-space
of this particular type is flat*). Another way to see this is by the observation that in
this case the adjoint metric and the original semireducible metric coincide. Thus, we
have proved the following

Theorem 5. Any non-trivial V(0)-solution of the 5D gravity is necessarily of
the partition type {1,4}.

We may now classify, by inspection, all the known solutions of the 5D gravity,
which helong to anyone of the 11 genuine semireducible types. The number 11 of
these classes results in the following way. For n = 5, we let p, i.e. the dimension
of the kernel to vary from the value 1 to the value 4 and in each case we count the
number of possible partitions of the integer 5 — p. In fact, for p = 1 we have five types
of solutions, for p = 2 three types, for p = 3 two types and for p = 4 just one type
of solutions. Thus, there is a total of eleven distinct classes of solutions, which can
be written (in a suitably chosen coordinate system) in the semireducible form (1.1).
For example, in the case of the partition type {1,4} belong the static solutions with
a 3-dimensional spherically symietric section. The generalized de Sitter solution
can be also regarded as a solution of this type. The most remarkable property of
this case is that if a space of this type satisfies the vacuum field equation then it is
necessarily a V' (0)-space (Theorem 4 of §2). The solution given by Wesson [31] in
1986, the solution given by Gron [15! in 1988 and the solution presented by Belinsky
and Verdaguer [1], belong to the type {1,3,1}. Extended Kasner’s solutions can
be found, which belong to the partition types {1.2,2} and to the type {1,1,1,1,1}
(compare with the solutions presented in [10], {16] and [8]). An interesting solution
of Davidson and Owen in 1985 and its locally equivalent solution of Chatterjee in
1990 belong to the type {1,2.1,1} (see the references [11] and [5] respectively). The
solution of Fukui in 1987 as well as the solutions considered by Ponce de Leon in 1988
and by Chi in 1990 and the solution of Chatterjee in 1987 belong to the type {2.3}
(see the references [14]. [24]. [T] and [4] respectively). The solutions of Billyard and

4) This holds for any V(0)-space ol the type {n — 1,1},
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Wesson in 1996 as well as the solutions of Wesson, Liu and Lim in 1993 belong to the
type partition type {2,2,1} (see {3] and {36] respectively). Clearly, these solutions
are not degenerate and they should not be confused with those of the type {1,2,1,1}.
Last but not least the solution by Chaterjee, Wesson and Billyard in 1997 as well as
the solution of Halpern in 2000 belongs to the type {2,1,1,1} (see the references (6]
and [16], [17] respectively).

Obviously, the aforementioned classification scheme applies equally well to the
general relativity. In this case there are only six distinct types® of semireducible
solutions. However, using Theorem 3 and the well-known fact that the 3-dimensional
Einstein Spaces are necessarily spaces of constant curvature we conclude that the par-
tition type {1, 3} is trivial in general relativity in the absence of matter (T3; = 0), while
the corresponding {1,4} type of the 5D gravity includes the non trivial V{(0)-solutions
we have mentioned previously and exhibits the phenomenon of inertial degeneracy as
we have proved in §3. An open question remains, namely, if the phenomenon of in-
ertial degeneracy manifests itself in cases where the partition type is different from
the type {1,4}. We conjecture, using a theorem presented by Solodovnikov in [28],
that inertial degeneracy may also occurs for the partition types {2,3} and {3,2} too.
Although arigorous proof or a concrete example for this statement is required, our pre-
vious analysis suggests that 5D gravity is essentially different from the 4-dimensional
independently of the version, which is adopted.
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