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Summary: Can something be both a particle and a wave? Most people would say not, but

it has been known since the early 1900s that in certain experiments an electron (say) can

show both kinds of behaviour. We recently found a way to resolve this apparent paradox

that is creating a bit of a buzz. 

Question (deep): How can something be both a wave and a particle?

Answer (shallow): When it's a “wavicle.”

If you fire a bullet, it moves according to the laws of physics, and by means of

slow-motion photography you can find exactly where it is in space at any time.  The

bullet is a particle, with all the properties of localization with which we are familiar.  If
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the bullet hits a cardboard target, you expect it to pass through, with a well-defined path

on the other side.  You do {not} expect that the bullet will mysteriously lose its identity,

transforming itself into a spread-out disturbance, and even showing the interference

patterns typical of a wave.  Yet this is what appears to happen if we carry out a similar

experiment on the microscopic scale, using (say) an electron and a screen with slits in it. 

Hence, that baffling situation whose apparent illogicality has caused many a physics

student to curse.  In the average textbook, the basic set-up is called the double-slit

experiment, and the general phenomenon is called wave-particle duality.  But giving

things names does not necessarily lead to an understanding of their physics, and many

physicists regard the invention of the tag “wavicle” as a cop-out.

Physicists, as a result of their belief in the underlying logicality of the world and

their training, do not like paradoxes.  And the deep thinking necessary to resolve apparent

paradoxes has frequently led to great advances in our understanding.

A prime example of this is Olbers' paradox.  In its modern form, this posits a

universe that is eternal, unbounded in ordinary space, and populated by a uniform

distribution of slowly-moving but bright galaxies. Then the number of sources visible to

an observer goes up as the cube of the distance, whereas the intensity of any one only

goes down as the inverse square of the distance.  This implies that the night sky should be

ablaze with light, not dark as anybody can see.  Olbers’ paradox dates from at least 1826,
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but was only laid definitively to rest in 1987.  (See Astrophysical Journal vol. 317, p.

601, or the non-technical version which appeared two years later in Sky and Telescope.

vol. 77, p. 594.)  The resolution depends critically on the existence of the big bang, which

by limiting the history of the universe also limits the time over which galaxies have been

shining, leading to a dark night sky.

There is an important message here: a local observation such as the few photons

per second entering the eye of a person out for a night stroll, can depend on a global

factor such as the existence eons ago of the big bang.  There is, in the case of Olbers'

paradox, a kind of chain effect involving the laws of physics, whereby the small things

that we observe here and now depend on the large things that happened there and

then.  Could it be, in the case of the double-slit experiment and wave-particle duality, that

a similar kind of resolution is possible?  That is, can we obtain an explanation of how

something can act like a particle and a wave on the small scale, by appealing to the laws

of physics as they are understood on the large scale?

The answer appears to be: Yes.  This, however, is subject to the proviso that we

are willing to look beyond the (simple) rules of local physics, and consider the (more

complicated) laws of global physics.  The latter involve Einstein's general theory of

relativity, which is rich in concepts which while normally applied to astrophysics can

equally well be used in the domain of atomic physics.  Both subjects involve laws of
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mechanics, but while these match numerically, they have different origins conceptually.

For example, quantum theory in its simplest version of wave mechanics is based on

concrete and unchangeable labels for space and time, whereas general relativity even in

its local form incorporates the ability to change and mix the labels of spacetime.  This is

clearly relevant to our wish to resolve wave-particle duality, because we need to find two

different but equivalent descriptions of the same thing.  The way in which this can

be achieved was outlined in a recent paper (Journal of General Relativity and Gravitation,

May 2006).  We did not wish to fuel the traditional feud between physicists who deal

with small (quantum) and large (classical) systems, so we titled our article “Wave

Mechanics and General Relativity: A Rapprochement”.

The bridge between our views of small and large physics turns out to depend

on the concept of “isometry”.  This is a word which, in straight translation, means “equal

measure”.  There are lots of examples of isometries in everyday life, but they are

frequently obscured by our preconceptions.  A particularly ingenious one opens the

movie “Cosmic Zoom”, which is used to teach students about the scales of objects in the

world, from quarks to quasars.  We see what is apparently a jumbo-jet landing at a large

airport.  It taxies ponderously towards buildings seen vaguely in the distance, and we can

almost feel the anticipation of the passengers as they prepare to disembark … Then a
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giant human hand reaches down, picks up the airplane, and the camera zooms back to

reveal Legoland!  We have been watching a model, not the real thing. 

Isometries can be illustrated by models (as long as they are ones made to

scale), but their essence is mathematical.  A more technical – but still very simple –

example involves the distance between two nearby points in ordinary (3D) space.  If we

use Cartesian coordinates, this is given by the familiar formula of Pythagoras,

2 2 2 2ds dx dy dz= + + .  But if we use spherical polar coordinates, it is given by

2 2 2 2 2 2( sin )ds dr r d dθ θ φ= + + . These expressions are equivalent.  In the first, we

measure the square of the distance in terms of 3 lengths ( , , )x y z .  In the second, we

measure it by 1 length and 2 angles ( , ,r θ φ  for the radius and measures akin to latitude

and longitude).  The choice of which set of coordinates to use is ours, and depends on

convenience.  We would naturally use the first to describe something like a picture on a

flat sheet of paper, and the second to describe something like the continents on the

spherical surface of the Earth.

For the universe according to Einstein, we need to add the time t to the above, to

form 4D spacetime.  However, this needs to be curved and not simply flat as before, if we

are to describe the force of gravity.  The resulting theory, general relativity, is very

successful in modelling the properties of large, massive objects, such as the Sun.  The

theory is based in part on the Principle of Covariance, which is basically a restatement of
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our ability to choose the coordinates (whereby we describe objects) as we please.  Within

this scheme, isometries are particularly important, because they provide different

descriptions of the same object.  This said, it should be added that some isometries are

exceedingly complicated mathematically, and require great skill to work into other more

familiar forms where we recognize what they mean physically.

At this point, the reader may ask why relativists bother to study isometries.  The

answer is that if we find a solution of Einstein's theory where the equations have one

form, we can often gain more insight into what that solution means if we cast the

equations into another form.  For this reason, isometries have been studied extensively by

such doyens of the subject as the late Nathan Rosen (in regard to black holes) and

Wolfgang Rindler (in regard to the big bang).  However, there are further uses for

isometries, especially in regard to elementary particles.  Attempts to model these using

straight general relativity have often been made (e.g., by G. ‘t Hooft who tried to model

particles as spinning black holes).  These did not meet with much success, mainly

because the 4D spacetime of Einstein gravity is not “big” enough to incorporate the other

3 known forces which affect particles.  (These are called, somewhat boringly, the strong

and weak interactions, the other one being electromagnetism.)  It is now popular to look

for ways to unify the 4 known forces using “spaces” of higher dimensions.  There are

several such theories, each motivated by different approaches to the symmetry groups of
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the particles, which are classifications of their physical properties such as charge and

spin. Hence 10D supersymmetry, 11D supergravity and 26D string theory.  Looking

for isometries in spaces of such high dimensions is both necessary and daunting.

Luckily, it is generally acknowledged that the low-energy limit of these theories involves

5D, which is also the simplest extension of general relativity.  Indeed, results on the

isometries of 5D spaces for both particles and cosmology have been known for decades.

(See for the electron P.A.M.  Dirac, Annals of Mathematics, vol. 36, p. 657, 1935; and

for the big bang H.P. Robertson in his book with T.W. Noonan, Relativity and

Cosmology, Saunders, Philadelphia, p. 413, 1968.)  Thus for a particle like the electron

and the wave behaviour it shows in an experiment like that of the double-slit, we have

some results in 5D which help us towards an isometry that shows how one thing can have

two guises. 

Experiments have also to be taken into account, of course.  In this respect, there is

one rule which is obeyed by all known particles to high accuracy.  Let E be the energy, p

the momentum in ordinary (3D) space, and m the rest mass.  Then experiments with

various kinds of accelerators have shown that there is a simple relation between these

quantities.  It is actually connected with a theoretical concept called Lorentz invariance,

which is a symmetry common to all particles that move in the flat spacetime of special

relativity, which is the local limit of curved general relativity.  (For a non-technical

7

review, see M. Pospelov and M. Romalis, Physics Today, vol. 57, no. 7, p. 40, 2004.)  If

c is the speed of light, the relation we need to respect is 2 2 2 2 4E p c m c= + . 

With this formula as a guide, and with the other results we have sketched above to

assist, we are in a position to pose our question: Is there an isometry between a particle

and a wave which shows that they are the same thing viewed in different ways?

To answer this, imagine you are aboard a boat on a stormy sea.  If the boat moves

along freely, close to the speed of the waves, you will hardly notice the latter.  If on the

other hand the boat is anchored to the seabed, you will see the waves rushing past you.

This means that whether you have a smooth existence or a bumpy one depends to a

degree on your own state, which in relativity is defined by the coordinates.  By changing

these judiciously, we can go from the straight-line motion of a particle to the up-and-

down motion of a wave.  To do this consistently, it is helpful to use a kind of ladder,

starting at 2 dimensions and going up to 5 dimensions.  The middle part of this,

corresponding to spacetime, then yields wave-like analogs of the energy and the

momentum (which has 3 independent components).  Let us label these E
�  and p

�

,where

the squiggles mean that we have the wave versions of the quantities E and p for the

particle noted above.  So far, there is nothing very challenging about our approach, and

most relativists would accept it as a consequence of Einstein's Principle of Covariance

(see before).  However, we now run into a conceptual problem to do with the third
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ingredient of mechanics, the mass m.  This is not usually treated as a coordinate (like

xyz), so how can we transform it to a wave?  To do this, we used a nifty mathematical

trick, which at the time we thought was original.  We took a known 4D isometry (in

books like that of Rindler it is known as the Milne/Minkowski transformation), extended

it to 5D, and then came back to 4D.  This may sound like going around the house to get to

the door, but if you have no other way to access the door (mass) then you have to do it.

In fact, physicists do it regularly in more simple problems, where they add an extra axis,

go around something with a special value (the “pole”), and thereby evaluate it.  The result

for our case is a quantity m
�  which is the wave version of the mass.  To finish the

analysis, we put all of the components together, and found 
2 2 2

2 4E p c m c= +
� � �  .

This relation for a wave agrees exactly with the one above for a particle, and

proves the case that the two things are in a geometrical sense equivalent.  But now, a note

of pathos in the midst of this proud physics.  When we did the above calculation in 2005,

we were unaware of Dirac's paper on the subject in 1935.  True, only one person among

the many who responded to our work knew of Dirac's article; and true it was published in

a place that is now seldom visited; and true it used the cumbersome language of operators

rather than the sleek symbolism of isometries.  But Dirac's results parallel our own.

Historians of science, given the 70-year lapse between the works, may be tempted to
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make disparaging remarks about the obscurity which attends the so-called knowledge

explosion.  However, we prefer to be more positive: If a difficult problem is analysed by

different people using different approaches and the result is the same, then you can

have confidence that you have the right answer.

The result we have described goes beyond a resolution of wave-particle duality.

For example, our approach shows that mass can be considered as a wave.  Dirac's

approach led him to discuss the “real” and “imaginary” parts of the mass of the electron,

which is mathematical language for the two orthogonal directions along which we

measure the properties of a wave. In hindsight, this may not be so surprising.  Of the 3

usual quantities of mechanics, L. de Broglie showed how to treat the energy and

momentum as waves.  So why not treat the third element – mass – as a wave?

This is possible, as we have seen; but it is somewhat disquieting.  Consider a

billiard ball. A pool player normally regards the mass as a quantity localized in the ball.

He does not think of it as a wave spread between the cushions of a snooker table.

However, he might make the mental switch, if he regarded the cue also as a tube of waves

which resonates with and locks onto the wave-like ball, producing a perfect shot into the

corner pocket.

Quantum mechanics has a philosophy which loves to play with the

interchangeability of particles and waves.  However, it is bedevilled with problems of
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interpretation.  In the view of the metaphysical Copenhagen school, each particle has

associated with it a wave, which collapses to a point when we choose to make an

observation.  This sounds miraculously unlikely to many physicists.  Better, is to admit

that particles and waves are equally valid constructs, and that the choice of description

lies with us.

This view puts the onus on us to understand the world; and not on it to go through

contortions so we can feel comfortable about it.  Our view agrees with that of the eminent

British astrophysicist Sir Arthur Eddington (1882-1944).  His writings include a much-

quoted analogy, involving a fisherman. The fisherman's net has a certain mesh size, so he

infers (wrongly) that all fish in the sea must be bigger than this. Reading Eddington's

works, it is apparent that many aspects of physics involve subjective elements, which

follow from the way in which we interpret the external world.  Our need to understand

things as particles or waves is an example of this.

Eddington's opinions, as developed by Sir F. Hoyle, have recently been made

more concrete by Sir R. Penrose.  He has argued that the human brain can amplify

microscopic quantum influences so that they have macroscopic effects.  This idea, while

speculative, explains many facets of how we interact with the world.  However, even if it

turns out to be correct, it will probably represent but one aspect of the brain's capabilities.
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The human mind, as supported biologically by the brain, is a remarkably devious device.

If it can handle the equivalence of a particle and a wave, what else can it do?
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