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The general Kaluza-Klein theories are physical theories in which both the “cylinder
condition” and the “compactification condition” from the classical Kaluza-Klein theory
are not necessarily satisfied. Our study is developed on a general Kaluza-Klein space
(M = M × K, ḡ), whose tangent bundle TM splits into horizontal and vertical distribu-

tions HM and V M , respectively. The main tool in our new point of view is what we call the
Riemannian horizontal connection ∇ on HM , which plays in a general Kaluza-Klein theory,
the same role as the Levi-Civita connection on the spacetime M in the classical Kaluza-Klein
theory. This connection enables us to classify the geodesics of (M, ḡ), to define the horizontal
Einstein gravitational tensor field, and to write down in a covariant form, the field equations
on (M, ḡ). In particular, we apply the study to both the theory of Einstein-Bergmann spaces
and the theory of general Kaluza-Klein spaces with bundle-like metric.
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Introduction

In 1919, Kaluza had the brilliant idea to use a 5-dimensional manifold to unify
the Einstein theory of general relativity with the Maxwell theory of electromag-
netism. His paper10) was published after a delay of two years, and since then several
studies have been developed with respect to both the physical and mathematical
point of views. Kaluza’s achievement was possible under a strong condition, which
assumes that all the local components of the pseudo-Riemannian metric on the 5-
dimensional manifold do not depend on the fifth coordinate. This is known in lit-
erature as the “cylinder condition”. Later on, Klein12) added the “condition of
compactification”, which consists in the assumption that the space is closed by a
very small circle in the direction of the fifth dimension.

In 1938, Einstein and Bergmann7) presented the first generalization of the Kaluza-
Klein theory. This consists in the fact that the local components of the 4-dimensional
pseudo-Riemannian metric are periodic functions of the fifth coordinate. However,
the electromagnetic potentials are still independent of the fifth coordinate, that is,
the cylinder condition is only partially satisfied. It is noteworthy that in 7), for the
first time in a general Kaluza-Klein theory, it is defined a covariant differentiation
on a vector bundle of rank 4 (in the modern terminology) over the 5-dimensional
manifold.

A well known generalization of the 5-dimensional Kaluza-Klein theory is the
so-called “space-time-matter theory” (cf. Wesson28)). According to this theory, the
matter in the 4-dimensional spacetime is considered to be a manifestation of the fifth
dimension. There have been found several cosmological solutions in which both the
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cylinder condition and the compactification of the fifth dimension were removed (cf.
Ponce de Leon,20) Chatterjee,3) Liu and Wesson,15),16) Billyard and Wesson,2) Ponce
de Leon and Wesson22)). An excellent survey on space-time-matter theories can be
found in Overduin and Wesson.19)

There are some other generalizations of the Kaluza-Klein theory to the (4+k)-
dimensional spaces with respect to non-abelian gauge groups (cf. Kerner,11) Cho,4)

Cho and Freund,5) Salam and Strathdee,26) Coquereaux and Jadczyk6)). We think
that the new point of view presented here on the 5-dimensional case with abelian
group U(1) can also be considered for the study of such theories.

Next, we describe the new point of view we want to present on general 5-
dimensional Kaluza-Klein theories. The study is developed in a general Kaluza-Klein
space (M = M × K, ḡ), where M and K are 4- and 1-dimensional manifolds, re-
spectively, and ḡ is a pseudo-Riemannian metric on M subject to some conditions.
Consider M as a trivial bundle over M , and denote by V M the vertical bundle on
M , which is tangent to the foliation whose leaves are {x} × K, x ∈ M . The gauge
transformations on M are determined by the horizontal distribution HM , which is
supposed to be a Lorentz vector bundle that is complementary orthogonal to V M
in TM with respect to ḡ. This geometrical framework enables us to construct what
we call the Riemannian horizontal connection on M , which is the main object in
our approach. More precisely, this connection is a linear connection on HM which
is a metric connection with prescribed torsion tensor field. It is noteworthy that
the Riemannian horizontal connection on HM plays a role in our general Kaluza-
Klein theory that is similar to the role of Levi-Civita connection in the 4-dimensional
spacetime. By using this connection we succeed to write down in a covariant form,
both the equations of motion and the field equations in (M, ḡ). New geometri-
cal objects like: horizontal electromagnetic tensor field, horizontal electromagnetic
energy-momentum tensor field and horizontal Einstein tensor field, have an impor-
tant role in the study. In particular, we apply the theory developed on (M, ḡ) to the
Einstein-Bergmann spaces, and to the general Kaluza-Klein spaces with bundle-like
metrics.

Now, we outline the content of the paper. In the first section, we present the
general Kaluza-Klein space (M, ḡ) and introduce the adapted coordinate systems
and adapted frame fields on (M, ḡ). Then, in §2, we shortly present the theory of
horizontal tensor fields on (M, ḡ). In particular, we define the horizontal electro-
magnetic tensor field F = (Fαβ) (cf. (2.4a)) and two important horizontal tensor
fields B = (Bα) (cf. (2.4b)) and D = (Dαβ) (cf. (2.12)). More about adapted tensor
fields on foliated manifolds can be found in the book of Bejancu and Farran.1) Next,
in §3, we construct the Riemannian horizontal connection ∇ on HM (cf. Theorem
3.1) and relate it with the Levi-Civita connection ∇ on (M, ḡ). Also, we express
the local coefficients of ∇ with respect to an adapted frame field, by means of local
coefficients of ∇ and the horizontal tensor fields defined in the previous section (cf.
Theorem 3.2). Then, in §4, we write down in a covariant form the equations of
motion in (M, ḡ) (cf. Theorem 4.1) and study two categories of geodesics in (M, ḡ):
the horizontal and non-horizontal geodesics. It is noteworthy that horizontal geo-
desics of (M, ḡ) must be autoparallels of the Riemannian horizontal connection on
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HM (cf. Corollary 4.2). Projectable geodesics of (M, ḡ) will define horizontal and
non-horizontal induced motions on the base manifold M . In §§5 and 6, we apply
our method of study to Einstein-Bergmann spaces and general Kaluza-Klein spaces
with bundle-like metrics, respectively. In particular, we show that in the case of the
classical Kaluza-Klein space (M, ḡ), any motion of the spacetime (M, g) is a hori-
zontal induced motion and vice versa (cf. Corollary 5.4), and the solutions of the
Lorentz force equations on (M, g) are the projections of some non-horizontal geode-
sics of (M, ḡ) (cf. Corollary 5.5). Also, in the case of general Kaluza-Klein spaces
with bundle-like metric, we find a geometrical condition on non-horizontal geodesics
of (M, ḡ) in order to become a classical Kaluza-Klein space (cf. Theorem 6.6). Next,
in §7, we prove some Bianchi identities for the Riemannian horizontal connection
∇ (cf. Theorem 7.1), and state the main properties of the curvature tensor field of
∇ (cf. Theorem 7.2). Then we define the horizontal Ricci tensor for ∇, which un-
der the constraint (7.26) becomes a symmetric horizontal tensor field of type (0, 2).
The horizontal scalar curvature of (M, ḡ) is locally given by a formula (cf. (7.25))
that is similar to the well known formula from Riemannian geometry. The main
difference consists in the fact that the local components in the right part of (7.25)
are taken with respect to the adapted frame fields. In case (M, ḡ) is a relativistic
general Kaluza-Klein space, we prove (7.33) which has a great role in the next sec-
tion. In §8, we define the Einstein horizontal gravitational tensor field and prove
that it is a symmetric horizontal tensor field whose horizontal divergence vanishes
identically on M (cf. Theorem 8.1). Then, in §9, we express both the Ricci tensor
and the scalar curvature of (M, ḡ) in terms of the horizontal Ricci tensor, horizontal
scalar curvature and the local components of the horizontal tensor fields F , D and
B (cf. Theorems 9.1 and 9.2). Finally, in §10, we define the horizontal electromag-
netic energy-momentum tensor field (cf. (10.4)) and express the local components
of the Einstein gravitational tensor field of a relativistic general Kaluza-Klein space
(M, ḡ) (cf. Proposition 10.1). This enables us to write, in a covariant form, the
Einstein equations on (M, ḡ) (cf. Theorem 10.1). The horizontal Einstein equation
(10.13) represents the generalization of the field equations that unify the Einstein
theory of general relativity with the Maxwell theory of electromagnetism from the
classical Kaluza-Klein theory. Finally, in §11 we present a comparison between our
approach and what is known so far in literature. In particular, we compare our new
point of view on general Kaluza-Klein theories with the approach of Wesson and
his colaborators (Ref. 28)) on space-time-matter theory. We close the paper with
Conclusions.

§1. The general Kaluza-Klein space

In this section we present the geometric structure of a general Kaluza-Klein
space. This space is a generalization of the classical Kaluza-Klein space, in the
sense that both the “cylinder condition” on the pseudo-Riemannian metric and the
“compactification condition” on the fifth dimension are not necessarily satisfied.
Such a generalization was intensively studied in the last two decades under the
name of space-time-matter theory (cf. Wesson28)). The purpose of this theory is to
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show how matter in the 4-dimensional spacetime is induced by the geometry of the
ambient 5-dimensional general Kaluza-Klein space. We note that the whole study
in the paper is developed by using the adapted coordinate systems and the adapted
frame fields, which we introduce in this section.

Let M and K be two manifolds of dimensions four and one, respectively. Con-
sider M = M × K as a trivial bundle over M with respect to the projection π on
the first factor. Then, any coordinate system (xα) on M defines a fibred coordinate
system (xα, x4) on M , where x4 is the fibre coordinate.

Two such coordinate systems (x̃α, x̃4) and (xα, x4) are related by

(a) x̃α = x̃α(x0, x1, x2, x3), (b) x̃4 = x̃4(x0, x1, x2, x3, x4). (1.1)

Throughout the paper, we use the ranges of indices: α, β, γ, ... ∈ {0, 1, 2, 3},
i, j, k, ... ∈ {0, 1, 2, 3, 4}. Also, we use Einstein’s convention, that is, repeated indices
with one upper index and one lower index denotes summation over their range.
For any vector bundle E over M , we denote by Γ (E) the F(M)-module of smooth
sections of E, where F(M) is the algebra of smooth functions on M .

Next, from (1.1) we deduce that the transformations of the natural frame fields
on M have the form

(a)
∂

∂xα
=

∂x̃γ

∂xα

∂

∂x̃γ
+

∂x̃4

∂xα

∂

∂x̃4
, (b)

∂

∂x4
=

∂x̃4

∂x4

∂

∂x̃4
· (1.2)

Then, due to (1.2b), we have a line vector bundle V M over M that is locally spanned
by ∂/∂x4. We call V M the vertical distribution on M . Now, suppose that on M
there exists a complementary distribution HM to V M in the tangent bundle TM
of M , which we call the horizontal distribution on M . Hence we have the direct
decomposition

TM = HM ⊕ V M. (1.3)

Also, we suppose that there exists on M a pseudo-Riemannian metric ḡ satisfying
the following conditions:
(i) The induced metric on HM by ḡ is a Lorentz metric, which means that it is

nondegenerate of signature (+ + +−).
(ii) HM and V M are orthogonal vector bundles with respect to ḡ.

By using ḡ, we construct around any point x̄ ∈ M a special fibred coordinate system,
as follows. Let (x̄α, x̄4) be a fibred coordinate system and ξ be a local unit vertical
vector field, that is, we have

(a) ξ = f(x̄α, x̄4)
∂

∂x̄4
, (b) ḡ(ξ, ξ) = ε, (1.4)

where ε = +1 or ε = −1, according as V M is spacelike or timelike vector bundle,
respectively. Then, we define

xα = x̄α, x4 =
∫ x̄4

a

1
f(x̄α, t)

dt, a ∈ R,
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and obtain a fibred coordinate system (xα, x4) such that

ξ =
∂

∂x4
· (1.5)

Thus, by (1.5) and (1.4b), we can state that around each point x̄ ∈ M there exists a
fibred coordinate system (xα, x4) on M such that

ḡ44 = ḡ

(
∂

∂x4
, ∂

∂x4

)
= ε. (1.6)

We call (xα, x4) satisfying (1.6) an adapted coordinate system on M .
From now on, we suppose that the transformations of coordinates on M have

the particular form

(a) x̃α = x̃α(x0, x1, x2, x3), (b) x̃4 = x4 + h(x0, x1, x2, x3), (1.7)

where h is a smooth function locally defined on M . These transformations were
named by Einstein and Bergmann7) the four- and cut-transformations. In this case,
(1.2) becomes

(a)
∂

∂xα
=

∂x̃γ

∂xα

∂

∂x̃γ
+

∂h

∂xα

∂

∂x̃4
, (b)

∂

∂x4
=

∂

∂x̃4
· (1.8)

Now, we consider an adapted coordinate system (xα, x4) and a local frame field
{Eα, ∂/∂x4} on M , where Eα ∈ Γ (HM) for all α ∈ {0, 1, 2, 3}. Then express ∂/∂xα

as follows:
∂

∂xα
= Aγ

αEγ + Aα
∂

∂x4
, (1.9)

where Aγ
α and Aα are smooth functions locally defined on M . As the transition

matrix from {Eα, ∂/∂x4} to the natural frame field {∂/∂xα, ∂/∂x4} is[
Aγ

α 0

Aα 1

]
,

we deduce that the 4 × 4 matrix [Aγ
α] is nonsingular. Hence, the vector fields

δ

δxα
= Aγ

αEγ ,

also represent locally the horizontal distribution. Moreover, from (1.9) we deduce
that

δ

δxα
=

∂

∂xα
− Aα

∂

∂x4
· (1.10)

We call {δ/δxα, ∂/∂x4} the adapted frame field corresponding to the adapted coor-
dinate system (xα, x4). If (x̃α, x̃4) is another adapted coordinate system, by using
(1.10) for both coordinate systems, and (1.8), we deduce that

δ

δxα
=

∂x̃γ

∂xα

δ

δx̃γ
+

{
Ãγ

∂x̃γ

∂xα
+

∂h

∂xα
− Aα

}
∂

∂x̃4
·



546 A. Bejancu

Hence, we have

Aα = Ãγ
∂x̃γ

∂xα
+

∂h

∂xα
, (1.11)

and
δ

δxα
=

∂x̃γ

∂xα

δ

δx̃γ
· (1.12)

We should note that (1.11) looks like the gauge transformations of the electromag-
netic vector potentials. The difference is that Aα and Ãγ are not supposed in (1.11)
to be independent of the fifth coordinate.
Remark 1.1 From now on, all the calculations around any point of M will be
performed by using both the adapted coordinate system and the adapted frame
field.

Next, we denote by g the Lorentz metric induced by ḡ on HM . Then we put

gαβ = g

(
δ

δxα
, δ

δxβ

)
= ḡ

(
δ

δxα
, δ

δxβ

)
· (1.13)

Also, taking into account the condition (ii), we obtain

ḡ

(
δ

δxα
, ∂

∂x4

)
= 0. (1.14)

Hence, by (1.6), (1.13) and (1.14), we deduce that the matrix of the pseudo-Riemannian
metric ḡ with respect to the adapted frame field {δ/δxα, ∂/∂x4} is expressed as fol-
lows: [

gαβ 0

0 ε

]
. (1.15)

On the other hand, by using (1.10) into (1.13) and (1.14), and taking into account
(1.6), we obtain

(a) ḡ

(
∂

∂xα
, ∂

∂xβ

)
= gαβ + εAαAβ , (b) ḡ

(
∂

∂xα
, ∂

∂x4

)
= εAα. (1.16)

Thus, the matrix of ḡ with respect to the natural frame field {∂/∂xα, ∂/∂x4} is much
more complicated than the one in (1.15). More precisely, it has the form[

gαβ + εAαAβ εAα

εAβ ε

]
· (1.17)

Now, we define the local 1-form on M :

δx4 = dx4 + Aαdxα. (1.18)

Then {dxα, δx4} is an adapted coframe field on M . Thus, the matrix representations
of ḡ in (1.15) and (1.17) are equivalent to

ḡ = gαβdxαdxβ + ε(δx4)2, (1.19)
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and
ḡ = (gαβ + εAαAβ)dxαdxβ + 2εAαdxαdx4 + ε(dx4)2, (1.20)

respectively.
Remark 1.2 All the functions gαβ and Aα from (1.17) are defined on the domain of
an adapted coordinate system on M , and therefore, they are not supposed to depend
only on the spacetime coordinates (xα). Thus we remove the cylinder condition from
classical Kaluza-Klein theories. Also, we do not require that K is a circle.

In particular, we consider Aα as the electromagnetic potentials on M , gαβ as the
local components of a Lorentz metric on M , and ε = 1. In this case, the metric ḡ
given by (1.17) is just the metric used in the classical Kaluza-Klein theory. For this
reason, we call (M, ḡ), where ḡ is given by (1.15) or (1.17), a general Kaluza-Klein
space.

It is worth mentioning that the above metric ḡ can be also considered as an
extension of the bulk metric used in the studies of Randall and Sundrum.23),24)

The extension is done in two directions. First, we do not exclude the off-diagonal
fluctuations of the metric, which are here represented by εAα. Secondly, we consider
on an equal foot, both the compact and non-compact extradimensions. The common
characteristic of both theories is that they are based on a non-factorizable background
geometry.

Finally, we note that in space-time-matter theories (cf. Wesson28)) the metric
ḡ is represented by a matrix in (1.17), but with some changes in the (i, 4)-entries.
These differences are due to the fact that, without loss of generality, we use adapted
coordinate systems with respect to which (1.6) is valid.

§2. Horizontal tensor fields on a general Kaluza-Klein space

In this section, we develop a tensor calculus on the horizontal distribution of
(M, ḡ). A general theory of adapted tensor fields on a foliated manifold was fully
developed in the book of Bejancu and Farran.1)

Let (M, ḡ) be a general Kaluza-Klein space. Denote by HM
∗ the dual vector

bundle to HM . Then a horizontal tensor field of type (p, q) on M is an F(M)-
multilinear mapping

T : Γ (HM
∗)p × (Γ (HM))q → F(M).

As a first example of such tensor field, we present the Lorentz metric g on HM ,
which is a horizontal tensor field of type (0, 2) on M :

g : Γ (HM) × Γ (HM) → F(M).

Moreover, the local components gαβ of g with respect to the frame field {δ/δxα}
on HM , satisfy some tensorial transformations which are similar to the ones on the
spacetime manifold M . Indeed, by using (1.13) and (1.12), we deduce that

gαβ = g̃γμ
∂x̃γ

∂xα

∂x̃μ

∂xβ
· (2.1)
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Next, we suppose that X is a horizontal vector field on M , that is, we have

X = Xα δ

δxα
·

Then, by using again (1.12), we deduce that the local components of X satisfy the
tensorial transformations

X̃γ = Xα ∂x̃γ

∂xα
· (2.2)

Now, looking at (2.1) and (2.2), and with the usual tensor calculus on M in mind,
we can easily imagine the tensorial transformations of any horizontal tensor field on
M . We have to note that the idea of such horizontal tensor analysis can be found,
for the first time, in the paper of Einstein and Bergmann.7) The difference is that
they consider separately the four-transformations (1.7a) and the cut-transformations
(1.7b). Thus our (2.2) is just (24) in 7), and the vector fields given by (1.10) can be
found in formula (26) of 7).

Next, by using the local components gαβ of the Lorentz metric g on HM , we can
construct a horizontal tensor field of type (2, 0), as follows. Let gαβ be the entries of
the inverse of the matrix [gαβ]. Then, by using (2.1), we deduce that

gαβ = g̃γμ ∂xα

∂x̃γ

∂xβ

∂x̃μ
,

and, therefore, gαβ define a horizontal tensor field of type (2, 0). As in the case of
usual tensor fields on manifolds, a horizontal tensor field of type (1, q) on M can be
also thought as an F(M)-multilinear mapping

T : Γ (HM)q → Γ (HM).

We close this section with a presentation of some horizontal tensor fields which
have a great role in the development of our approach. First, by direct calculations
using (1.10), we deduce that

(a)
[

δ

δxβ
, δ

δxα

]
= Fαβ

∂

∂x4
, (b)

[
δ

δxα
, δ

δx4

]
= Bα

∂

∂x4
, (2.3)

where we put:

(a) Fαβ =
∂Aβ

∂xα
− ∂Aα

∂xβ
− Aα

∂Aβ

∂x4
+ Aβ

∂Aα

∂x4
=

δAβ

δxα
− δAα

δxβ
,

(b) Bα =
∂Aα

∂x4
· (2.4)

Now, we denote by h and v the projection morphisms of TM on HM and V M ,
respectively. Then, we define

F : Γ (HM) × Γ (HM) → Γ (V M); F (hX, hY ) = −v[hX, hY ], (2.5)

for all X, Y ∈ Γ (TM). By direct calculations using (2.5) and (2.3a), we obtain

F

(
δ

δxα
, δ

δxβ

)
= Fαβ

∂

∂x4
· (2.6)
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Moreover, by using (1.8b) and (1.12) into (2.6), we deduce that Fαβ satisfy

Fαβ = F̃γμ
∂x̃γ

∂xα

∂x̃μ

∂xβ
,

with respect to the coordinate transformations (1.7). Hence, the functions Fαβ,
α, β ∈ {0, 1, 2, 3}, given by (2.4a), define a skew-symmetric horizontal tensor field
of type (0, 2) on M . If, in particular, Aα are the electromagnetic potentials on M ,
then from (2.4a) we deduce that Fαβ are the local components of the electromagnetic
tensor field on M , that is, we have

Fαβ =
∂Aβ

∂xα
− ∂Aα

∂xβ
·

For this reason, we call the horizontal tensor field with local components Fαβ, given
by (2.4a), the horizontal electromagnetic tensor field of the general Kaluza-Klein
space (M, ḡ).

Next, we note that, according to (1.11), the functions Aα do not define a hor-
izontal covector field on (M, ḡ). However, taking partial derivatives in (1.11) with
respect to x4, and using (2.4b) and (1.7), we obtain

Bα = B̃γ
∂x̃γ

∂xα
·

Thus, the functions Bα define a horizontal covector field B on M , given by

B(hX) = BαXα, ∀X ∈ Γ (TM), (2.7)

where Xα are the local components of hX with respect to the frame field {δ/δxα}.
Finally, we define the mapping

D : Γ (HM)2 × Γ (V M) → F(M),

D(hX, hY, vZ) =
1
2
{vZ(g(hX, hY )) − g(h[vZ, hX], hY )

− g(h[vZ, hY ], hX)}, (2.8)

for all X, Y, Z ∈ Γ (TM). It is easy to check that D is F(M)-3-linear mapping
satisfying

D(hX, hY, vZ) = D(hY, hX, vZ). (2.9)

Then, by using the Lorentz metric g on HM and D given by (2.8), we define another
mapping, still denoted by D, and given by

D : Γ (V M) × Γ (HM) → Γ (HM),

g(D(vX, hY ), hZ) = D(hY, hZ, vX). (2.10)

Locally, we put

(a) D

(
δ

δxα
, δ

δxβ
, ∂

∂x4

)
= Dαβ,

(b) D

(
∂

∂x4
, δ

δxα

)
= Dα

γ δ

δxγ
. (2.11)
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Then, by using (2.8), (1.13), (2.3b), (2.10) and (2.11), we obtain

(a) Dαβ =
1
2

∂gαβ

∂x4
, (b) Dα

γ = Dαβgβγ =
1
2

gβγ ∂gαβ

∂x4
· (2.12)

Taking into account the F(M)-linearity of both D given by (2.8) and (2.10), we
deduce that the functions Dαβ and Dα

γ given by (2.12) define horizontal tensor
fields of type (0, 2) and (1, 1), respectively. From (2.4b) and (2.12a) we deduce the
following.
Proposition 2.1 A general Kaluza-Klein space (M, ḡ) becomes a classical Kaluza-
Klein space, if and only if the horizontal tensor fields B and D vanish identically on
M .

§3. A remarkable linear connection on HM

In this section we construct a linear connection on the horizontal distribution
HM , which is going to play, in our approach, the same role as the Levi-Civita
connection on the spacetime, in the classical Kaluza-Klein theory. This connection
is going to be the main tool in the general Kaluza-Klein theory that we develop in
this paper. More precisely, we use it for a study of motions in (M, ḡ) (see §§4, 5 and
6), and for the construction of the horizontal Einstein gravitational tensor field on
HM which leads us to some horizontal field equations (see §§7, 8, 9 and 10).

Let∇ be a linear connection on HM , that is, ∇ is a mapping

∇ : Γ (TM) × Γ (HM) → Γ (HM), (X, hY ) → ∇XhY,

satisfying the following conditions:
(a) ∇ is F(M)-linear with respect to the first variable.
(b) ∇ is a derivation with respect to the second variable, that is, we have

∇X(fhY + hZ) = X(f)hY + f∇XhY + ∇XhZ,

for all X, Y, Z ∈ Γ (TM).
Then, we define the torsion tensor field of ∇ as F(M)-bilinear mapping

T : Γ (TM) × Γ (HM) → Γ (HM),

T (X, hY ) = ∇XhY −∇hY hX − h[X, hY ], ∀X, Y ∈ Γ (TM). (3.1)

Also, taking into account that on HM there exists a Lorentz metric g, we say that
∇ is a metric connection on HM , if g is parallel with respect to ∇, that is, we have

(∇Xg)(hY, hZ) = X(g(hY, hZ))− g(∇XhY, hZ) − g(hY,∇XhZ) = 0,

∀X, Y, Z ∈ Γ (TM). (3.2)

Now, we can prove the following important result.
Theorem 3.1 Let (M, ḡ) be a general Kaluza-Klein space endowed with the Lorentz
horizontal distribution (HM, g). Then there exists a unique linear connection ∇ on
HM satisfying the following conditions:
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(i) ∇ is a metric connection.
(ii) The torsion tensor field of ∇ is given by

(a) T (hX, hY ) = 0, (b) T (vX, hY ) = D(vX, hY ), (3.3)

for all X, Y ∈ Γ (TM), where D is the horizontal tensor field defined by (2.10)
and (2.8).

Proof. Define the mapping

∇ : Γ (TM) × Γ (HM) → Γ (HM),

as follows:
(a) 2g(∇hXhY, hZ) = hX(g(hY, hZ)) + hY (g(hZ, hX))

−hZ(g(hX, hY )) + g(h[hX, hY ], hZ)

− g(h[hY, hZ], hX) + g(h[hZ, hX], hY ),

(b) ∇vXhY = h[vX, hY ] + D(vX, hY ), (3.4)

for all X, Y, Z ∈ Γ (TM). Then it is easy to check that ∇ is a linear connection on
HM satisfying the conditions (i) and (ii). Now, we suppose that ∇′ is another linear
connection on HM satisfying (i) and (ii). Then, by using (3.3b) and (3.1) for ∇′, we
deduce that ∇′ satisfies (3.4b). Finally, by using (3.2) and (3.3a) for ∇′, we obtain

0 = (∇′
hXg)(hY, hZ) + (∇′

hY g)(hZ, hX) − (∇′
hZg)(hX, hY )

= hX(g(hY, hZ)) + hY (g(hZ, hX)) − hZ(g(hX, hY ))

+ g(h[hX, hY ], hZ) − g(h[hY, hZ], hX) + g(h[hZ, hX], hY )

− 2g(∇′
hXhY, hZ),

which proves (3.4a) for ∇′. Hence ∇′ = ∇, and the proof if complete.

We recall that the Levi-Civita (Riemannian) connection ∇ on the pseudo-
Riemannian manifold (M, ḡ) is given by (cf. O’Neill,18) p. 61)

2ḡ(∇XY, Z) = X(ḡ(Y, Z)) + Y (ḡ(Z, X)) − Z(ḡ(X, Y ))

+ ḡ([X, Y ], Z) − ḡ([Y, Z], X) + ḡ([Z, X], Y ), (3.5)

for all X, Y, Z ∈ Γ (TM). Moreover, ∇ is the unique linear connection on M which is
a metric and torsion-free linear connection. Taking into account that ∇ constructed
in Theorem 3.1 is a metric connection and satisfies (3.3a), we are entitled to call it
the Riemannian horizontal connection on (M, ḡ). Also, by (3.3) we see that D given
by (2.10) and (2.8) can be called the torsion tensor field of ∇.

Now, we prove the following.
Proposition 3.1 The Levi-Civita connection ∇ on (M, ḡ) and the Riemannian hor-
izontal connection on (HM, g) satisfy the identities

(a) h∇hXhY = ∇hXhY,

(b) ḡ(v∇hXhY, vZ) = −D(hX, hY, vZ) − 1
2

ḡ(F (hX, hY ), vZ),

(c) g(h∇vXhY, hZ) = g(∇vXhY, hZ) +
1
2

ḡ(F (hY, hZ), vX), (3.6)
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for all X, Y, Z ∈ Γ (TM).
Proof. First, we take X = hX, Y = hY and Z = hZ in (3.5) and, by using (1.13),
(1.14) and (3.4a), we obtain (3.6a). Then we take X = hX, Y = hY and Z = vZ
into (3.5), and, by using (1.13), (1.14), (2.8) and (2.5), we deduce that

2ḡ(v∇hXhY, vZ) = 2ḡ(∇hXhY, vZ) = {−vZ(g(hX, hY )) + g(h[vZ, hX], hY )

+ g(h[vZ, hY ], hX)} + ḡ(v[hX, hY ], vZ)

= −2D(hX, hY, vZ) − ḡ(F (hX, hY ), vZ),

which proves (3.6b). Finally, we take X = vX, Y = hY and Z = hZ into (3.5), and,
by using (1.13), (1.14), (2.5), (2.8), (2.10) and (3.4b), we obtain

2ḡ(h∇vXhY, hZ) = 2ḡ(∇vXhY, hZ) = vX(g(hY, hZ)) + g(h[vX, hY ], hZ)

− g(h[vX, hZ], hY ) − ḡ(v[hY, hZ], vX)

= 2D(hY, hZ, vX)+2g(h[vX, hY ], hZ)+ḡ(F (hY, hZ), vX)

= 2g(∇vXhY, hZ) + ḡ(F (hY, hZ), vX),

which proves (3.6c).

Taking into account that ∇ and ∇ are used in a study of both the equations of
motion and the Einstein equations on (M, ḡ), we close this section with a presenta-
tion of these objects by using local coordinates on M . Let (xα, x4) be an adapted
coordinate system in (M, ḡ) and {δ/δxα, ∂/∂x4} the corresponding adapted frame
field on (M, ḡ). Then we put

(a) ∇ δ
δxβ

δ

δxα
= Γα

γ
β

δ

δxγ
, (b) ∇ ∂

∂x4

δ

δxα
= Γα

γ
4

δ

δxγ
· (3.7)

Next, we take hX = δ/δxβ, hY = δ/δxα, hZ = δ/δxμ in (3.4a) and by using (3.7a),
(1.13), (1.14) and (2.3a), we obtain

Γα
γ

β =
1
2

gγμ

{
δgμα

δxβ
+

δgμβ

δxα
− δgαβ

δxμ

}
· (3.8)

Similarly, we take vX = ∂/∂x4 and hY = δ/δxα in (3.4b), and by using (3.7b),
(2.3b) and (2.11b), we deduce that

Γα
γ
4 = Dα

γ . (3.9)

Now, we take hY = δ/δxβ, hZ = δ/δxα, and in turn X = δ/δxν and X = ∂/∂x4

into (3.2), and by using (1.13), (3.7) and (3.9), we obtain

(a) gαβ|ν =
δgαβ

δxν
− gγβ Γα

γ
ν − gαγ Γβ

γ
ν = 0,

(b) gαβ|4 =
∂gαβ

∂x4
− gγβ Dα

γ − gαγ Dβ
γ = 0. (3.10)



A New Point of View on General Kaluza-Klein Theories 553

Remark 3.1 It is important to note that the local coefficients (3.8) have been de-
fined for the first time by Einstein and Bergmann7) in formula (27b). However, the
covariant differentiation defined in 7) is only h-metric, that is, (3.10a) is satisfied
while (3.10b), in general, is not satisfied. This is because in 7) the covariant deriva-
tive of horizontal tensor fields with respect to x4 is just the partial derivative.

As a consequence of (3.10), we have

(a) gαβ |γ = 0, (b) gαβ |4 = 0. (3.11)

Now, we note that for raising and lowering Greek indices, we use gαβ and gαβ,
respectively, as in the following examples:

(a) Fα
γ = Fαβgβγ , (b) Fμγ = gμαFα

γ ,

(c) Bγ = gγαBα, (d) Dα
γ = Dαβgβγ . (3.12)

Next, we state the following.
Theorem 3.2 The Levi-Civita connection on a general Kaluza-Klein space (M, ḡ)
is given by

(a) ∇ δ
δxβ

δ

δxα
= Γα

γ
β

δ

δxγ
+

(
1
2

Fαβ − εDαβ

)
∂

∂x4
,

(b) ∇ ∂
∂x4

δ

δxα
=

(
Dα

γ +
ε

2
Fα

γ
) δ

δxγ
− Bα

∂

∂x4
,

(c) ∇ δ
δxα

∂

∂x4
=

(
Dα

γ +
ε

2
Fα

γ
) δ

δxγ
,

(d) ∇ ∂
∂x4

∂

∂x4
= εBγ δ

δxγ
· (3.13)

Proof. First, we put

∇ δ
δxβ

δ

δxα
= Γα

γ
β

δ

δxγ
+ Γα

4
β

∂

∂x4
· (3.14)

Then, by (3.6a) and (3.7a), we obtain

Γα
γ

β = Γα
γ

β . (3.15)

Now, by using (3.6b), (2.11a), (2.6) and (1.6), we infer that

ḡ

(
v∇ δ

δxβ

δ

δxα
, ∂

∂x4

)
=

ε

2
Fαβ − Dαβ. (3.16)

Taking into account (3.14) into (3.16), and by using (1.6), we obtain

Γα
4
β =

1
2

Fαβ − εDαβ. (3.17)

Thus (3.13a) is deduced from (3.14), by using (3.15) and (3.17). Next, we put

∇ ∂
∂x4

δ

δxα
= Γα

γ
4

δ

δxγ
+ Γα

4
4

∂

∂x4
· (3.18)
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Then, we take vX = ∂/∂x4, hY = δ/δxα and hZ = δ/δxμ in (3.6c) and by using
(3.18), (3.7b), (1.13), (3.9), (2.6) and (1.6), we deduce that

Γα
ν
4 gνμ = Dα

ν gνμ +
ε

2
Fαμ.

Contracting this by gμγ and taking into account (3.12a), we obtain

Γα
γ
4 = Dα

γ +
ε

2
Fα

γ . (3.19)

Now, by using (3.18), (1.6), (3.5) and (2.3b), we infer that

Γα
4
4 = εḡ

(
∇ ∂

∂x4

δ

δxα
, ∂

∂x4

)
= −εḡ

([
δ

δxα
, ∂

∂x4

]
, ∂

∂x4

)
= −Bα. (3.20)

Thus (3.13b) is obtained from (3.18) by using (3.19) and (3.20). Taking into account
that ∇ is torsion-free, and by using (3.13b) and (2.3b), we deduce that

∇ δ
δxα

∂

∂x4
= ∇ ∂

∂x4

δ

δxα
+

[
δ

δxα
, ∂

∂x4

]
=

(
Dα

γ +
ε

2
Fα

γ
) δ

δxγ
,

which proves (3.13c). Next, due to (1.6), we have

ḡ

(
∇ ∂

∂x4

∂

∂x4
, ∂

∂x4

)
= 0. (3.21)

Hence we have

∇ ∂
∂x4

∂

∂x4
= Γ 4

γ
4

δ

δxγ
, (3.22)

which via (1.13) implies

ḡ

(
∇ ∂

∂x4

∂

∂x4
, δ

δxα

)
= gαγ Γ 4

γ
4. (3.23)

On the other hand, taking into account that ḡ is parallel with respect to ∇, and
using (1.14), (3.13b) and (1.6), we obtain

ḡ

(
∇ ∂

∂x4

∂

∂x4
, δ

δxα

)
= −ḡ

(
∂

∂x4
,∇ ∂

∂x4

δ

δxα

)
= εBα. (3.24)

Comparing (3.23) with (3.24) and using (3.12c), we deduce that

Γ 4
γ
4 = εBγ . (3.25)

Finally, by using (3.25) into (3.22), we obtain (3.13d).

Now, we note that covariant derivatives of horizontal tensor fields are horizontal
tensor fields too. More precisely, the covariant derivatives Fαβ|γ , Dαβ|γ and Bα|γ
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define horizontal tensor fields of types (0, 3), (0, 3) and (0, 2), respectively, and they
are given by

(a) Fαβ|γ =
δFαβ

δxγ
− Fμβ Γα

μ
γ − Fαμ Γβ

μ
γ ,

(b) Dαβ|γ =
δDαβ

δxγ
− Dμβ Γα

μ
γ − Dαμ Γβ

μ
γ ,

(c) Bα|γ =
δBα

δxγ
− Bμ Γα

μ
γ . (3.26)

Similarly, Fαβ|4, Dαβ|4 and Bα|4 define horizontal tensor fields of type (0, 2), (0, 2)
and (0, 1), respectively, and they are given by

(a) Fαβ|4 =
∂Fαβ

∂x4
− Fμβ Dα

μ − Fαμ Dβ
μ,

(b) Dαβ|4 =
∂Dαβ

∂x4
− Dμβ Dα

μ − Dαμ Dβ
μ =

∂Dαβ

∂x4
− 2Dαμ Dβ

μ,

(c) Bα|4 =
∂Bα

∂x4
− Bμ Dα

μ. (3.27)

The covariant derivatives (3.26) and (3.27) will have a great role in §§8, 9 and 10.

§4. Equations of motion in a general Kaluza-Klein space

In the previous sections, we present our new point of view on the geometry of a
general Kaluza-Klein space (M, ḡ). In summary, this is based on the following:

a. The splitting of TM into horizontal and vertical distributions.
b. The existence of adapted coordinate systems and adapted frame fields.
c. The new geometric objects: Riemannian horizontal connection ∇ and the hor-

izontal tensor fields F, B and D.
The present section is the first one in which we show the powerful of the new

method that we introduce for studying general Kaluza-Klein theories. By this
method, we write down, in covariant form, the equations of motion in (M, ḡ), ana-
lyzing two classes of geodesics. It is interesting to note that the geodesics of (M, ḡ)
which are tangent to the horizontal distribution HM , must be autoparallels with
respect to the Riemannian horizontal connection ∇ on HM . The projection of the
geodesics of (M, ḡ) on the base manifold M gives two classes of motions on M , which
have physical interpretations for some particular cases.

Let C be a smooth curve in M given by the equations:

xi = xi(t), i ∈ {0, 1, 2, 3, 4}. (4.1)

Then, the tangent vector field d/dt to C is expressed with respect to the natural
frame field {∂/∂xα, ∂/∂x4} as follows:

d

dt
=

dxα

dt

∂

∂xα
+

dx4

dt

∂

∂x4
· (4.2)

The expression (4.2) of d/dt was used in the whole literature on the space-time-matter
theory, in order to write down the equations of motion in (M, ḡ) (cf. Wesson28)).



556 A. Bejancu

Moreover, most of the results have been stated by using the arc-length parameter
on C. The lack of a tensorial calculus on (M, ḡ) with respect to the coordinate
transformations (1.7), raised the problem of covariance of these equations. By our
method we overtake this deficiency, and present here the equations of motion on
(M, ḡ) in a form that it is invariant with respect to (1.7).

First, by using (1.10) into (4.2), we obtain

d

dt
=

dxα

dt

δ

δxα
+

δx4

δt

∂

∂x4
, (4.3)

where we put
δx4

δt
=

dx4

dt
+ Aα

dxα

dt
· (4.4)

Then we prove the following.
Proposition 4.1 Let C be a curve in a general Kaluza-Klein space (M, ḡ). Then
the covariant derivatives of the adapted frame field {δ/δxα, ∂/∂x4} with respect to
the Levi-Civita connection ∇ on (M, ḡ) in the direction of the tangent vector field to
C are given by

(a) ∇d
dt

δ

δxα
=

{
Γα

γ
β

dxβ

dt
+

(
Dα

γ +
ε

2
Fα

γ
) δx4

δt

}
δ

δxγ

+
{(

1
2

Fαβ − εDαβ

)
dxβ

dt
− Bα

δx4

δt

}
∂

∂x4
,

(b) ∇d
dt

∂

∂x4
=

{(
Dα

γ +
ε

2
Fα

γ
) dxα

dt
+ εBγ δx4

δt

}
δ

δxγ
· (4.5)

Proof. Both formulae in (4.5) are obtained by direct calculations. First, by using
(4.3), (3.13a) and (3.13b), we obtain (4.5a). Then, (4.5b) is deduced in a similar
way, by using (4.3), (3.13c) and (3.13d).

Now, we can state the main result of this section.
Theorem 4.1 The equations of motion in a general Kaluza-Klein space (M, ḡ) are
expressed as follows:

(a)
d2xγ

dt2
+ Γα

γ
β

dxα

dt

dxβ

dt
+ (2Dα

γ + εFα
γ)

dxα

dt

δx4

δt

+ εBγ

(
δx4

δt

)2

= 0,

(b)
d

dt

(
δx4

δt

)
− εDαβ

dxα

dt

dxβ

dt
− Bα

dxα

dt

δx4

δt
= 0, (4.6)

where (Γα
γ

β , Dα
γ) are the local coefficients of the Riemannian horizontal connection

∇ on HM , and Fα
γ, Bα, Dαβ are the local components of the horizontal tensor fields

defined in §2.
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Proof. As it is well known, the equations of geodesics of pseudo-Riemannian mani-
fold (M, ḡ) are given by (cf. O’Neill,18) p. 67)

∇d
dt

d

dt
= 0, (4.7)

where ∇ is the Levi-Civita connection on (M, ḡ). By using (4.3) and (4.5), and
taking into account that ∇ is a linear connection and that Fαβ are skew-symmetric,
we deduce that:

∇d
dt

d

dt
= ∇d

dt

(
dxα

dt

δ

δxα
+

δx4

δt

∂

∂x4

)
=

d2xγ

dt2
δ

δxγ

+
d

dt

(
δx4

δt

)
∂

∂x4
+

dxα

dt
∇d

dt

δ

δxα
+

δx4

δt
∇d

dt

∂

∂x4

=

{
d2xγ

dt2
+ Γα

γ
β

dxα

dt

dxβ

dt
+ (2Dα

γ + εFα
γ)

dxα

dt

δx4

δt

+ εBγ

(
δx4

δt

)2
}

δ

δxγ

+
{

d

dt

(
δx4

δt

)
− εDαβ

dxα

dt

dxβ

dt
− Bα

dxα

dt

δx4

δt

}
∂

∂x4
· (4.8)

Thus, (4.6) is obtained from (4.7) by using (4.8), and taking into account that
{δ/δxα, ∂/∂x4} is a local frame field on M .

Before we study the above equations of motion, we compare them with what is
known in literature. The main difference between (4.6) and some other equations
of motion in (M, ḡ) is that the coefficients Γα

γ
β from (4.6a) define indeed a linear

connection ∇ on HM which we call the Riemannian horizontal connection on (M, ḡ).
By using (3.7a) and (1.12), we deduce that Γα

γ
β satisfy the following transformations

with respect to (1.7):

Γα
γ
β

∂x̃μ

∂xγ
= Γ̃ν

μ
λ

∂x̃ν

∂xα

∂x̃λ

∂xβ
+

∂2x̃μ

∂xα∂xβ
· (4.9)

In all the space-time-matter theories there are used such local coefficients, which
we denote here by Γ ∗

α
γ

β and they are given by similar formulas as the Christoffel
symbols in the 4-dimensional spacetime, that is, we have

Γ ∗
α

γ
β =

1
2

gγμ

{
∂gμα

∂xβ
+

∂gβμ

∂xα
− ∂gαβ

∂xμ

}
· (4.10)

Unfortunately, the functions Γ ∗
α

γ
β given by (4.10) do not satisfy the transformations

(4.9), unless gαβ are independent of the fifth coordinate.
Another difference is that the motions in the spacetime M will be obtained here

by the projection of geodesics of (M, ḡ) on M . So far, these motions were considered
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to be induced on M by taking x4 = k, where k is a constant, that is M is thought as
a submanifold of (M, ḡ). However, according to (1.17), gαβ(xγ , k) do not represent
the local components of the induced Lorentz metric on M by ḡ, unless Aα = 0 on
M for all α ∈ {0, 1, 2, 3}.

Also, in this approach we study the role of Aα(x) into the general Kaluza-Klein
theory. In most of the other theories, these objects vanish on M . Many papers have
been concerned with the so called canonical metric (Mashhoon and Wesson,17) Ponce
de Leon,21) Liko, Overduin, and Wesson,14) and Chapter 6 in Wesson28)) given by

ḡ =
(x4)2

L2
gαβ(xα, x4)dxαdxβ − (dx4)2, (4.11)

where L is a non-zero constant introduced for dimensional consistency. Finally, in
the alternative to compactification presented by Randall and Sundrum,23),24) the
pseudo-Riemannian metric proposed in the 5-dimensional space is also considered
with Aα = 0, α ∈ {0, 1, 2, 3}.

Now, we come back to the study of equations of motion (4.6), taking into account
the role of the horizontal distribution into the classification of geodesics of (M, ḡ).
First, we say that a curve C on (M, ḡ) is a horizontal curve, if it is tangent to the
horizontal distribution, at any of its points. Thus, by (4.3) and (4.4), we deduce
that C is a horizontal curve, if and only if at any point of C, one of the following
conditions is satisfied:

d

dt
=

dxα

dt

δ

δxα
, (4.12)

or
δx4

δt
=

dx4

dt
+ Aα

dxα

dt
= 0. (4.13)

A geodesic C of (M, ḡ), which is also a horizontal curve, is called a horizontal geo-
desic.

Next, by using (4.13) into (4.6), we obtain the following interesting corollary.
Corollary 4.1 Let C be a horizontal curve given by (4.1) in a general Kaluza-Klein
space (M, ḡ). Then C is a horizontal geodesic of (M, ḡ), if and only if it satisfies
(4.13) and the following equations:

(a)
d2xγ

dt2
+ Γα

γ
β

dxα

dt

dxβ

dt
= 0,

(b) Dαβ
dxα

dt

dxβ

dt
= 0. (4.14)

It is noteworthy that the equations in (4.14a) are related to the Riemannian hori-
zontal connection ∇ on HM . To show this, we give the following definition. We say
that a horizontal curve C̄ in (M, ḡ) is an autoparallel curve with respect to ∇, if we
have

∇d
dt

d

dt
= 0, (4.15)

where d/dt is given by (4.12). Then, by direct calculations using (4.12) and (3.7a),
we deduce that (4.14a) and (4.15) are equivalent. Hence, we can state the following.
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Corollary 4.2 Let C be a horizontal curve in (M, ḡ). Then C is a horizontal geode-
sic of (M, ḡ), if and only if it is an autoparallel curve with respect to the Riemannian
horizontal connection ∇ on HM and satisfies (4.14b).

An interesting particular case deserves to be considered into the study. Namely,
we suppose that the horizontal electromagnetic tensor field F vanishes identically on
M . Thus, according to (2.6) we have

Fαβ = 0, ∀α, β ∈ {0, 1, 2, 3}. (4.16)

In this case, by (2.5) we conclude that the horizontal distribution is integrable. Then,
a horizontal geodesic C of (M, ḡ) must live entirely in a leaf of HM . Indeed, in this
case, two points from different leaves cannot be joint by a horizontal curve.

Thus, we can state the following.
Proposition 4.2 Let (M, ḡ) be a general Kaluza-Klein space, whose horizontal elec-
tromagnetic tensor field F vanishes identically on M . Then the horizontal distribu-
tion is integrable, and any horizontal geodesic C must live in a leaf of HM .

The second category of geodesics of (M, ḡ) contains all the geodesics that are
not tangent to HM on their entire length. We say that C is a non-horizontal curve
if there exists a point x̄ ∈ C such that d/dt given by (4.3) is not tangent to HM at
x̄. Thus, C is a non-horizontal curve, if and only if we have

δx4

δt
=

dx4

dt
+ Aα

dxα

dt
�= 0, ∀t ∈ I, (4.17)

where I is a subinterval of [a, b]. A geodesic of (M, ḡ), which is a non-horizontal
curve, is called a non-horizontal geodesic. Then, from Theorem 4.1 we deduce the
following corollary.
Corollary 4.3 A curve C is a non-horizontal geodesic of a Kaluza-Klein space
(M, ḡ), if and only if it is a solution of the system of differential equations (4.6),
subject to the constraint (4.17) at least on a neighborhood of one of its points.

Next, we consider a curve C in M given by Eq. (4.1), and suppose that the
vector field

d∗

dt
=

dxα

dt

δ

δxα
, (4.18)

is non-zero at any point of C. Then, we call C a projectable curve on the base
manifold M . In this case, there exists a curve C in M which is obtained by the
projection of C on M , that is, its equations are given by

xα = xα(t), t ∈ [a, b], α ∈ {0, 1, 2, 3}. (4.19)

We say that C determines an induced motion in M . Clearly, any horizontal geodesic
is a projectable curve. Also, any non-horizontal geodesic is projectable, if and only
if it is not tangent to V M at any of its points.
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§5. The Einstein-Bergmann generalization of Kaluza-Klein theory

In 1938, Einstein and Bergmann7) studied a generalization of the Kaluza-Klein
theory. According to the terminology of the present paper, the authors supposed
that the following conditions are satisfied:
(i) The transformations of coordinates in M are the four- and cut-transformations

given by (1.7).
(ii) The local components gαβ of the Lorentz metric on HM are periodic functions

of x4.
(iii) The functions Aα from (1.17) do not depend on x4.
From now on, a general Kaluza-Klein space (M, ḡ) satisfying the conditions (i), (ii)
and (iii) will be called an Einstein-Bergmann space. From condition (iii) and (2.4b),
we deduce that in this section we have

Bα = 0, ∀α ∈ {0, 1, 2, 3}. (5.1)

Remark 5.1 The condition (5.1) is invariant with respect to four- and cut-
transformations (1.7). This is a direct consequence of the fact that Bα are the
local components of a horizontal covector field on M .

By using (5.1) and (2.4a), we deduce that the horizontal electromagnetic tensor
field F has the local components

Fαβ(xμ) =
∂Aβ

∂xα
− ∂Aα

∂xβ
· (5.2)

However, Aα(xμ) are not the local components of a horizontal covector field, since
they still satisfy (1.11) with respect to the transformations (1.7). Now, by using
(5.1) into (4.6), we deduce the following.
Theorem 5.1 The equations of motion in an Einstein-Bergmann space (M, ḡ) are
given by

(a)
d2xγ

dt2
+ Γα

γ
β(xi)

dxα

dt

dxβ

dt
+ (2Dα

γ(xi) + εFα
γ(xi))

dxα

dt

δx4

δt
= 0,

(b)
d

dt

(
δx4

δt

)
= εDαβ(xi)

dxα

dt

dxβ

dt
· (5.3)

Equation (5.3) does not appear in the paper of Einstein-Bergmann.7) However,
the coefficients Γα

γ
β(xi) of the Riemannian horizontal connection ∇ on HM coincide

with the coefficients given by formula (27b) in 7). In (5.3), there are also involved
Dαβ(xi) and Dα

γ(xi) given by (2.12). Finally, though Fαβ from (5.2) do not depend
on x4, the functions Fα

γ are given by

Fα
γ(xi) = gγβ(xi)Fαβ(xμ),

and, therefore, they are not functions of (x0, x1, x2, x3) alone.
Next, we analyze the two categories of geodesics on (M, ḡ). First, taking into

account that horizontal geodesics satisfy (4.13), from Theorem 5.1 we obtain the
following corollary.
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Corollary 5.1 Let (M, ḡ) be an Einstein-Bergmann space. Then C is a horizontal
geodesic, if and only if it satisfies the system of differential equations:

(a)
dx4

dt
+ Aα(xμ)

dxα

dt
= 0,

(b)
d2xγ

dt2
+ Γα

γ
β(xi)

dxα

dt

dxβ

dt
= 0,

(c) Dαβ(xi)
dxα

dt

dxβ

dt
= 0. (5.4)

Remark 5.2 According to the discussion from the previous section, from (5.4b) we
deduce that the horizontal geodesics of an Einstein-Bergmann space are necessarily
autoparallel of the Riemannian horizontal connection ∇ on HM .

Next, we consider the non-horizontal geodesics of (M, ḡ) satisfying the constraint

dx4

dt
+ Aα(xμ)

dxα

dt
= c, (5.5)

where c is a non-zero constant. Then, from Theorem 5.1 we deduce the following
corollary.
Corollary 5.2 Any non-horizontal geodesic of the Einstein-Bergmann space (M, ḡ),
subject to the constraint (5.5), is a solution of the system formed by (5.5) and the
equations:

(a)
d2xγ

dt2
+ Γα

γ
β(xi)

dxα

dt

dxβ

dt
+ c(2Dα

γ(xi) + εFα
γ(xi))

dxα

dt
= 0,

(b) Dαβ(xi)
dxα

dt

dxβ

dt
= 0. (5.6)

In particular, we suppose that gαβ from (1.13) are functions of (x0, x1, x2, x3) alone,
that is, by (2.12) we have

Dαβ = 0, for all α, β ∈ {0, 1, 2, 3}. (5.7)

In this case, gαβ(xμ) define a Lorentz metric g on M given by

g

(
∂

∂xα
, ∂

∂xβ

)
= gαβ(xμ). (5.8)

Also, we suppose that Aα(xμ) are the local components of a covector field on M ,
and hence they are thought as electromagnetic potentials on the spacetime (M, g).
In this particular case, the Einstein-Bergmann space (M, ḡ) becomes the classical
Kaluza-Klein space. Thus, taking into account (5.7), from Theorem 5.1 we deduce
the following.
Theorem 5.2 The equations of motion in a classical Kaluza-Klein space (M, ḡ) are
given by

(a)
dx4

dt
+ Aα(xμ)

dxα

dt
= c,

(b)
d2xγ

dt2
+ Γα

γ
β(xμ)

dxα

dt

dxβ

dt
+ cεFα

γ(xμ)
dxα

dt
= 0, (5.9)
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where c is any real constant.
From this theorem we obtain the following characterizations of horizontal and

non-horizontal geodesics of a classical Kaluza-Klein space.
Corollary 5.3 Let (M, ḡ) be the classical Kaluza-Klein space. Then we have the
following assertions:
(a) The horizontal geodesics of (M, ḡ) are given by the system

(a)
dx4

dt
+ Aα(xμ)

dxα

dt
= 0,

(b)
d2xγ

dt2
+ Γα

γ
β(xμ)

dxα

dt

dxβ

dt
= 0. (5.10)

(b) The non-horizontal geodesics of (M, ḡ) are given by the system (5.9) with c �= 0.
From the assertion(a) we deduce the following.

Corollary 5.4 Any motion of the Lorentz manifold (M, g) is the projection of a
horizontal geodesic of the classical Kaluza-Klein space (M, ḡ), and vice versa.

Finally, let q and m be the charge and mass of the particle in the spacetime
(M, g). Then the Lorentz force equations of (M, g) with electromagnetic potentials
Aα(xμ) are expressed as follows:

d2xγ

dt2
+ Γα

γ
β(xμ)

dxα

dt

dxβ

dt
=

q

m
Fα

γ(xμ)
dxα

dt
· (5.11)

Thus, from assertion (b) of Corollary 5.3 we deduce the following.
Corollary 5.5 The solutions of the Lorentz force equations (5.11) on the spacetime
(M, g) coincide with the projection of the non-horizontal geodesics of (M, ḡ) subject
to the constraint

dx4

dt
+ Aα(xμ)

dxα

dt
= −ε

q

m
· (5.12)

Now, we come back to the Einstein-Bergmann space (M, ḡ) and consider the
constraint (5.12). Then, from Corollary 5.2 we deduce the following.
Corollary 5.6 Any non-horizontal geodesic of the Einstein-Bergmann space (M, ḡ),
subject to the constraint (5.12), is a solution of the system formed by (5.12) and the
equations:

(a)
d2xγ

dt2
+ Γα

γ
β(xi)

dxα

dt

dxβ

dt
=

q

m
(2εDα

γ(xi) + Fα
γ(xi))

dxα

dt
,

(b) Dαβ(xi)
dxα

dt

dxβ

dt
= 0. (5.13)

Comparing (5.11) with (5.13), we are entitled to call (5.13) the Lorentz force equa-
tions in an Einstein-Bergmann space (M, ḡ). The projections of the solutions of
(5.12) and (5.13) on the base manifold M are generalizations of the solutions of the
usual Lorentz force equations on a spacetime.
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§6. General Kaluza-Klein spaces with bundle-like metrics

Let (M, ḡ) be a general Kaluza-Klein space whose horizontal tensor field D given
by (2.8) vanishes identically on M . Then, by (2.12) we deduce that

(a) Dαβ = 0, or equivalently, (b)
∂gαβ

∂x4
= 0, ∀α, β ∈ {0, 1, 2, 3}. (6.1)

According to a well known result on foliated manifolds (cf. Bejancu and Farran,1)

p. 111), the pseudo-Riemannian metric ḡ satisfying (6.1b) is bundle-like for the folia-
tion determined by the vertical distribution V M over M . In this case, the geodesics
of (M, ḡ) have an interesting geometric property which we state in the next theorem.
Theorem 6.1 Let (M, ḡ) be a general Kaluza-Klein space with bundle-like metric.
Suppose that a geodesic C of (M, ḡ) is tangent to the horizontal distribution HM at
one of its points. Then C is a horizontal geodesic of (M, ḡ).
Proof. According to a result of Reinhart,25) each geodesic of (M, ḡ) which is or-
thogonal to a leaf of the foliation determined by V M , remains orthogonal to any leaf
of the foliation for its entire length. As HM and V M are orthogonal with respect
to ḡ, the assertion of the theorem is a direct consequence of this result.

From the above theorem, we conclude that: each geodesic C of (M, ḡ) is either
a horizontal geodesic, or it has no points at which it is tangent to HM . According
to the terminology from §4, we call C from the latter case, a totally non-horizontal
geodesic of (M, ḡ). Next, we present the equations of these categories of geodesics of
(M, ḡ). First, we state the following.
Theorem 6.2 Let (M, ḡ) be a general Kaluza-Klein space with bundle-like metric.
Then any horizontal geodesic C of (M, ḡ) is given by the system:

(a)
d2xγ

dt2
+ Γα

γ
β(xμ)

dxα

dt

dxβ

dt
= 0,

(b)
dx4

dt
+ Aα(xi)

dxα

dt
= 0. (6.2)

Proof. As C is a horizontal geodesic of (M, ḡ), from (4.13) and (4.14) we deduce
(6.2), via (6.1a).

Now, by (6.1b) we note that gαβ(xμ) define a Lorentz metric on M which we
denote by the same symbol g. Moreover, by using (1.10) and (6.1b) in (3.8), we
deduce that the local coefficients Γα

γ
β(xμ) from (6.2a) are given by

Γα
γ

β(xμ) =
1
2

gγν

{
∂gνα

∂xβ
+

∂gνβ

∂xα
− ∂gαβ

∂xν

}
· (6.3)

Hence, in this particular case, the base manifold M becomes a spacetime with Lorentz
metric g and Levi-Civita connection given by its local coefficients from (6.3). This,
together with Theorem 6.2, enables us to state the following interesting result.
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Corollary 6.1 Let (M, ḡ) be a Kaluza-Klein space with bundle-like metric. Then
the motions of the spacetime (M, g) coincide with the horizontal induced motions on
M which are obtained by the projection of the horizontal geodesics of (M, ḡ) on M .
Remark 6.1 Corollary 6.1 is similar to the assertion (a) of Corollary 5.3 on the
horizontal geodesics of the classical Kaluza-Klein space. The difference is that in
(6.2b) the functions Aα are not necessarily independent of x4.

Next, we state the following.
Theorem 6.3 Let (M, ḡ) be a general Kaluza-Klein space with bundle-like metric.
Then any totally non-horizontal geodesic C of (M, ḡ) is given by the system:

(a)
d2xγ

dt2
+ Γα

γ
β(xμ)

dxα

dt

dxβ

dt
+ εFα

γ(xi)
dxα

dt

δx4

δt

+ εBγ(xi)
(

δx4

δt

)2

= 0,

(b)
d

dt

(
δx4

δt

)
− Bα

dxα

dt

δx4

δt
= 0, (6.4)

subject to the constraint
dx4

dt
+ Aα(xi)

dxα

dt
�= 0, (6.5)

at any of its points.
Proof. Since C is a totally non-horizontal geodesics in (M, ḡ), from Theorem 6.1
we deduce that the constraint (6.5) must be satisfied at any of its points. Then
Eq. (6.4) is obtained from (4.6), taking into account (6.1a) and (2.12b).

From Theorem 6.3 we deduce the following corollary.
Corollary 6.2 Let (M, ḡ) be a general Kaluza-Klein space with bundle-like metric.
Then, any totally non-horizontal geodesic C of (M, ḡ) satisfying the constraint

dx4

dt
+ Aα(xi)

dxα

dt
= c, (6.6)

where c is a non-zero constant, is given by the system:

(a)
d2xγ

dt2
+ Γα

γ
β(xμ)

dxα

dt

dxβ

dt
+ εc

{
Fα

γ(xi)
dxα

dt
+ cBγ(xi)

}
= 0,

(b) Bα(xi)
dxα

dt
= 0. (6.7)

We close this section with a discussion on the existence of the above two cate-
gories of geodesics. First, we prove the following.
Theorem 6.4 Let (M, ḡ) be a general Kaluza-Klein space with bundle-like metric.
Suppose that x̄0 = (x̄i

0) is a point in M and u = uα(δ/δxα) is a horizontal vector at
x̄0. Then there exists a unique horizontal geodesic passing through x̄0 and tangent
to u.
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Proof. First, we write the system (6.2), that gives the horizontal geodesics, as
follows:

dxγ

dt
= yγ ,

dyγ

dt
= −Γα

γ
β(xμ)yαyβ,

dx4

dt
= −Aα(xi)

dxα

dt
· (6.8)

Then, by the well known “Existence and Uniqueness Theorem for ODE” (cf. Stern-
berg,27) p. 372), there exists a unique solution (xi(t), yα(t)) such that xi(0) = x̄i(0)
and yα(0) = uα.

The situation is different for totally non-horizontal geodesics of (M, ḡ). First,
by using (1.18) and (2.4b), we deduce that (6.4b) is equivalent to

d2x4

dt2
=

(
Bα(xi)Aβ(xi) − ∂Aα

∂xβ

)
dxα

dt

dxβ

dt
· (6.9)

Then, the system (6.4) can be expressed as follows:

dxγ

dt
= yγ ,

dx4

dt
= y4,

dyγ

dt
= −Γα

γ
β(xμ)yαyβ − εFα

γ(xi)yα(y4 + Aβ(xi)yβ)

− εBγ(xi)(y4 + Aβ(xi)yβ)2,

dy4

dt
=

(
Bα(xi)Aβ(xi) − ∂Aα

∂xβ

)
yαyβ. (6.10)

According to the constraint (6.5), the initial conditions (x̄i
0, u

i) must satisfy

u4 + Aα(x̄i
0)u

α �= 0. (6.11)

Thus, due to the above theorem on ODE, there exists a unique solution of (6.10)
with initial conditions satisfying (6.11). Moreover, by continuity of this solution, the
constraint (6.5) is locally satisfied by this solution.
Theorem 6.5 Let (M, ḡ) be a general Kaluza-Klein space with bundle-like metric.
Suppose that x̄0 = (x̄i

0) is a point in M and u = ui(∂/∂xi) is a tangent vector to M
at x̄0 satisfying (6.11). Then there exists a unique totally non-horizontal geodesic
passing through x̄0 and tangent to u at x̄0.

Next, we are concerned with the particular class of totally non-horizontal geode-
sics, which are described in Corollary 6.2. First, we consider four non-zero constants
c(γ) and four vectors (uα

(γ)), γ ∈ {0, 1, 2, 3}. Then, we suppose that through x̄0 = (x̄i
0)

there are passing four totally non-horizontal geodesics C(γ) that are tangent at x0

to the vectors
u(γ) = (uα

(γ))
δ

δxα

∣∣∣
x̄0

+ c(γ)
∂

∂x4

∣∣∣
x̄0

, (6.12)

and satisfy the system given by (6.6) and (6.7) with c replaced by cγ . We say that
C(γ) are linearly independent totally non-horizontal geodesics, if the vectors (uα

(γ))
are linearly independent. Now, we can prove the following surprising result.
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Theorem 6.6 Let (M, ḡ) be a general Kaluza-Klein space with bundle-like metric.
Suppose that through each point of M there are passing four linearly independent
totally non-horizontal geodesics satisfying the system given by (6.6) and (6.7). Then
(M, ḡ) must be the classical Kaluza-Klein space, that is, Aα must be functions of
(x0, x1, x2, x3) alone, for all α ∈ {0, 1, 2, 3}.
Proof. Let x̄0 = (x̄i

0) be a fixed, but arbitrary point of M , and Cγ be the four
linearly independent geodesics passing through x̄0 and tangent to vectors u(γ) from
(6.12). Then, by (6.7b) we must have

Bα(x̄i
0)u

α
(γ) = 0, γ ∈ {0, 1, 2, 3}. (6.13)

As the vectors (uα
(γ)) are linearly independent, from (6.13) we obtain Bα(x̄i

0) = 0,
for all α ∈ {0, 1, 2, 3, }. Taking into account that x̄0 is an arbitrary point of M , we
deduce that Bα are vanishing at any point of M . Hence, by (2.4b), we conclude that
Aα are functions of (x0, x1, x2, x3) alone.

Finally, we remark that Theorem 6.5 does not state the existence of particular
geodesics satisfying the constraint (6.6). However, we have the following.
Theorem 6.7 Let (M, ḡ) be the classical Kaluza-Klein space. Then through each
point x̄0 ∈ M is passing a unique totally non-horizontal geodesic that is tangent to
the vector

u = uα δ

δxα

∣∣∣
x̄0

+ c
∂

∂x4

∣∣∣
x̄0

, c �= 0,

and satisfies the constraint (6.6).
Proof. In this case, we have Bα = 0, for all α ∈ {0, 1, 2, 3}. Hence, the system given
by (6.6) and (6.7) can be expressed as follows:

dxγ

dt
= yγ ,

dyγ

dt
= −Γα

γ
β(xμ)yαyβ − εcFα

γ(xμ)yα,

dx4

dt
= −Aα(xμ)yα + c. (6.14)

Thus, the assertion of the theorem is obtained by applying the above theorem on
ODE for the system (6.14).

§7. Horizontal Ricci tensor and horizontal scalar curvature

Let (M, ḡ) be a general Kaluza-Klein space and ∇ be the Riemannian horizontal
connection on HM given by (3.4). We know that ∇ is a metric connection and its
torsion tensor field is given by (3.3). In the first part of this section, we present the
main properties of the curvature tensor field of ∇. For this purpose, we need an
extension of ∇ from HM to TM . More precisely, we consider a linear connection ∇̃
on M given by

(a) ∇̃XhY = ∇XhY, (b) ∇̃XvY ∈ Γ (V M). (7.1)

An example of such extension is given by

∇̃XY = ∇XhY + v∇XvY,
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where ∇ is the Levi-Civita connection on (M, ḡ).
Now, denote by T̃ and R̃ the torsion and curvature tensor fields of ∇̃, that is,

we have:
(a) T̃ (X, Y ) = ∇̃XY − ∇̃Y X − [X, Y ],

(b) R̃(X, Y )Z = ∇̃X∇̃Y Z − ∇̃Y ∇̃XZ − ∇̃[X,Y ]Z. (7.2)

Proposition 7.1 The torsion and curvature tensor fields of an extension ∇̃ of ∇
satisfy the following:

(a) T̃ (hX, hY ) = F (hX, hY ),

(b) hT̃ (vX, hY ) = D(vX, hY ),

(c) hT̃ (vX, vY ) = 0,

(d) R̃(hX, hY )hZ = R(hX, hY )hZ,

(e) R̃(vX, hY )hZ = R(vX, hY )hZ,

(f) hR̃(hY, hZ)vX = 0, (7.3)

for all X, Y, Z ∈ Γ (TM), where F and D are the horizontal tensor fields given by
(2.5) and (2.10) respectively, and R is the curvature tensor field of ∇ given by

R(X, Y )hZ = ∇X∇Y hZ −∇Y ∇XhZ −∇[X,Y ]hZ. (7.4)

Proof. First, by using (7.2a), (7.1a), (3.1), (3.3a) and (2.5), we obtain

T̃ (hX, hY ) = ∇hXhY −∇hY hX − h[hX, hY ] − v[hX, hY ]

= T (hX, hY ) + F (hX, hY ) = F (hX, hY ),

which proves (7.3a). Similarly, by using (7.2a), (7.1) and (3.4b), we obtain (7.3b).
Next, (7.3c) is obtained from (7.2a), by using (7.1b), and taking into account

that V M is an integrable distribution. Now, (7.3d) and (7.3e), are deduced by direct
calculations in (7.2b), using (7.1a) and (7.4). Finally, (7.3f) is obtained from (7.2b)
by using (7.1b).

Next, we recall from Kobayashi and Nomizu,13) (p. 135), that the torsion and
curvature tensor fields of ∇̃ satisfy the following Bianchi identities:

(a)
∑

(X,Y,Z)

{(∇̃X T̃ )(Y, Z) + T̃ (T̃ (X, Y ), Z) − R̃(X, Y )Z} = 0,

(b)
∑

(X,Y,Z)

{(∇̃XR̃)(Y, Z)U + R̃(T̃ (X, Y ), Z)U} = 0, (7.5)

where
∑

(X,Y,Z) is a cyclic sum with respect to X, Y, Z. Now, we prove the following.
Theorem 7.1 (Bianchi Identities for Riemannian Horizontal Connection)
Let (M, ḡ) be a general Kaluza-Klein space and ∇ the Riemannian horizontal con-
nection on HM . Then the curvature tensor field R of ∇ satisfies the following
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identities:

(a)
∑

(hX,hY,hZ)

{R(hX, hY )hZ − D(F (hX, hY ), hZ)} = 0,

(b)
∑

(hX,hY,hZ)

{(∇hXR)(hY, hZ)hU + R(F (hX, hY ), hZ)hU} = 0, (7.6)

for all X, Y, Z, U ∈ Γ (TM).
Proof. First, by using (7.1), (7.3a), (7.3b), (2.5) and (7.3d), we obtain

h(∇̃hX T̃ )(hY, hZ) = 0, hT̃ (T̃ (hX, hY ), hZ) = D(F (hX, hY ), hZ). (7.7)

Then, (7.6a) is obtained from (7.5a) by using (7.7) and (7.3d). Next, by using (7.3d),
(7.1a), (7.3a) and (7.3e), we deduce that

(∇̃hXR̃)(hY, hZ)hU = (∇hXR)(hY, hZ)hU,

R̃(T̃ (hX, hY ), hZ)hU = R(F (hX, hY ), hZ)hU. (7.8)

Thus, by using (7.8) into (7.5b), we obtain (7.6b).

Next, we define the curvature tensor field of type (0, 4) of ∇, which is denoted
by the same symbol R and it is given by

R(hX, hY, hZ, hU) = g(R(hX, hY )hU, hZ). (7.9)

Then, we state the following.
Theorem 7.2 The curvature tensor field of type (0, 4) of the Riemannian horizontal
connection ∇ on HM satisfies the identities:

(a) R(hX, hY, hZ, hU) + R(hY, hX, hZ, hU) = 0,

(b) R(hX, hY, hZ, hU) + R(hX, hY, hU, hZ) = 0,

(c) R(hZ, hX, hY, hU) − R(hY, hU, hZ, hX)

+
∑

(hX,hY,hZ,hU)

{D(hX, hY, F (hZ, hU))} = 0, (7.10)

for all X, Y, Z, U ∈ Γ (TM), where
∑

(hX,hY,hZ,hU) is a cyclic sum with respect to the
vectors hX, hY, hZ, hU , that is, we have∑

(hX,hY,hZ,hU)

{D(hX, hY, F (hZ, hU))} = D(hX, hY, F (hZ, hU))

+ D(hY, hZ, F (hU, hX)) + D(hZ, hU, F (hX, hY ))

+ D(hU, hX, F (hY, hZ)). (7.11)

.
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Proof. First, (7.10a) is obtained by using (7.9) and taking into account the skew-
symmetry of R from (7.4) with respect to the first two variables. Then, taking into
account that ∇ is a metric connection on HM , by direct calculations using (7.9) and
(7.4), we obtain (7.10b). Next, by using (7.6a), (7.9), (7.10b) and (2.10), we deduce
that ∑

(hX,hY,hZ)

{R(hX, hY, hZ, hU) + D(hU, hX, F (hY, hZ))} = 0. (7.12)

Finally, by a combinatorial exercise similar to the Riemannian geometry (cf.
Kobayashi and Nomizu,13) p. 198), using (7.12), (7.10a), (7.10b), (7.11) and tak-
ing into account the skew-symmetry of F , we obtain (7.10c).

Now, we are in position to define a tensor field of Ricci type for the Riemannian
horizontal connection ∇ on HM . First, we consider a local orthonormal basis {Eα},
α ∈ {0, 1, 2, 3}, in Γ (HM), and we denote by εα the signature of Eα, that is, we
have

εα = g(Eα, Eα), α ∈ {0, 1, 2, 3}. (7.13)

Then, we define the horizontal Ricci tensor of the general Kaluza-Klein space (M, ḡ),
as follows:

Ric(hX, hY ) =
3∑

α=0

εα{R(Eα, hX, Eα, hY )}, (7.14)

for all X, Y ∈ Γ (TM), where R is the curvature tensor field of ∇, given by (7.4).
Clearly, Ric is a F(M)-bilinear mapping on Γ (HM), and, therefore, according to
the theory from §2, it is a horizontal tensor field on (M, ḡ). However, in general,
Ric is not a symmetric horizontal tensor field. Now, we define the horizontal scalar
curvature R of (M, ḡ) by

R =
3∑

α=0

εα Ric(Eα, Eα). (7.15)

We should note that both formulae (7.14) and (7.15) do not depend on the ortho-
normal basis in Γ (TM). In order to write down the field equations induced by the
Einstein equations on (M, ḡ), we need to express the main geometric objects and
some identities, by using an adapted frame field {δ/δxα, ∂/∂x4} on (M, ḡ).

First, we put

(a) R

(
δ

δxγ
, δ

δxβ

)
δ

δxα
= Rα

μ
βγ

δ

δxμ
,

(b) R

(
∂

∂x4
, δ

δxβ

)
δ

δxα
= Rα

μ
β4

δ

δxμ
,

(c) R

(
δ

δxμ
, δ

δxγ
, δ

δxβ
, δ

δxα

)
= Rαβγμ. (7.16)

Then, by direct calculations, using (7.16), (7.4), (3.7), (3.9), (2.3) and (1.13), we
obtain
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(a) Rα
μ

βγ =
δΓα

μ
β

δxγ
− δΓα

μ
γ

δxβ
+ Γα

ν
β Γν

μ
γ−Γα

ν
γ Γν

μ
β−FβγDα

μ,

(b) Rα
μ

β4 =
∂Γα

μ
β

∂x4
− Dα

μ|β + DβDα
μ,

(c) Rαβγμ = gβν Rα
ν
γμ, (7.17)

where Dα
μ|β is the horizontal covariant derivative defined by ∇ and given by

Dα
μ|β =

δDα
μ

δxβ
− Dν

μ Γα
ν
β + Dα

ν Γν
μ

β .

Next, we take hX = δ/δxα, hY = δ/δxβ and hZ = δ/δxγ into (7.6a), and by using
(7.16a), (2.6) and (2.11b), we express the first Bianchi identity as follows:∑

(α,β,γ)

{Rα
μ

βγ + Fαβ Dγ
μ} = 0. (7.18)

Similarly, we take hX = δ/δxα, hY = δ/δxβ, hZ = δ/δxγ , hU = δ/δxμ in (7.6b),
and by using (7.16a), (3.7a), (2.6), and (7.16b), we infer that the second Bianchi
identity is expressed as follows:∑

(α,β,γ)

{Rμ
ν
αβ|γ − Fαβ Rμ

ν
γ4} = 0, (7.19)

where we used the covariant derivative defined by ∇, that is, we have:

Rμ
ν
αβ|γ =

δRμ
ν
αβ

δxγ
+ Rμ

σ
αβ Γσ

ν
γ − Rσ

ν
αβ Γμ

σ
γ − Rμ

ν
σβ Γα

σ
γ − Rμ

ν
ασ Γβ

σ
γ .

Also, we take hX = δ/δxμ, hY = δ/δxγ , hZ = δ/δxβ and hU = δ/δxα in (7.10),
and by using (7.16c), (2.6) and (2.11a), we obtain the identities:

(a) Rαβγμ + Rαβμγ = 0,

(b) Rαβγμ + Rβαγμ = 0,

(c) Rαγμβ − Rμβαγ = FαβDγμ + FβγDμα + FγμDαβ + FμαDβγ . (7.20)

Now, in order to obtain the local components of the horizontal Ricci tensor with
respect to the adapted frame {δ/δxα}, we consider the local orthonormal frame
{Eα} in Γ (HM), and put

Eα = Eγ
α

δ

δxγ
· (7.21)

Then, we have

gγμ =
3∑

α=0

εαEγ
αEμ

α. (7.22)

To show this, we put
δ

δxβ
= E

λ
βEλ,
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and, from (1.13), we deduce that

gβγ =
3∑

λ=0

ελE
λ
βE

λ
γ .

Then, taking into account that [Eλ
β] is the inverse matrix of [Eγ

α], we obtain

gβγgγμ =
3∑

λ,α=0

ελεαE
λ
βE

λ
γEγ

αEμ
α =

3∑
λ,α=0

ελεαδλ
αEμ

αE
λ
β = Eμ

αE
α
β = δμ

β ,

which proves (7.22). Next, we put

Rαβ = Ric
(

δ

δxβ
, δ

δxα

)
, (7.23)

and, by using (7.14), (7.21), (7.22), (7.16c) and (7.17c), we obtain

Rαβ = Rα
μ

βμ, (7.24)

where the components from the right hand side are given by (7.17a). Also, by using
(7.21), (7.22) and (7.23) into (7.15), we deduce that the horizontal scalar curvature
has a local expression as in the pseudo-Riemannian geometry:

R = gγμRγμ, (7.25)

but the local components in the right part are considered with respect to adapted
frames and coframes on HM .

As the theory we develop in the next section needs a symmetric horizontal Ricci
tensor, we state the following.
Theorem 7.3 The horizontal Ricci tensor of a general Kaluza-Klein space is sym-
metric, if and only if we have

Fα
γDγμ − Fμ

γDγα = FαμDγ
γ . (7.26)

Proof. Contracting (7.20c) with gγβ, and taking into account (7.24) and the skew-
symmetry of Fβγ , we obtain

Rαμ − Rμα = Fα
γDγμ − Fμ

γDγα + FμαDγ
γ .

Thus, Ric is symmetric, if and only if (7.26) is satisfied.

In what follows, we suppose that the horizontal Ricci tensor is symmetric. Then,
we put

Rγ
α = gγβRαβ, (7.27)

and consider its covariant derivative with respect to ∇, that is, we have

Rγ
α|μ =

δRγ
α

δxμ
+ Rν

αΓν
γ

μ − Rγ
νΓα

ν
μ.
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Also, we put

R|μ =
δR

δxμ
· (7.28)

Then, we prove the following.
Proposition 7.2 The horizontal Ricci tensor and the horizontal scalar curvature of
a general Kaluza-Klein space (M, ḡ) satisfy the identity

2Rα
β|α − R|β = gμαRμ

ν
α4Fβν + Fν

μRμ
ν
β4 − Fβ

μRμ
ν
ν4. (7.29)

Proof. Contracting the indices ν and γ in (7.19) and using (7.24), we obtain

Rμ
ν
αβ|ν + Rμβ|α − Rμα|β = Rμ

ν
α4Fβν − FανRμ

ν
β4 + FαβRμ

ν
ν4. (7.30)

Next, by using (7.17c), (3.11a), (7.20a), (7.20b), (7.24) and (7.27), we infer that

gμαRμ
ν
αβ|ν = −gμαgνλRλμαβ|ν = gνλRλ

μ
βμ|ν = Rν

β|ν . (7.31)

Finally, contracting (7.30) by gμα and using (7.31), (3.11a), (7.27), (7.25) and (3.12a),
we obtain (7.29).

Now, suppose that on (M, ḡ) the following constraint is satisfied

Fν
μRμ

ν
β4 − Fβ

μRμ
ν
ν4 = gμαRμ

ν
α4Fνβ. (7.32)

We call (M, ḡ) satisfying (7.26) and (7.32) a relativistic general Kaluza-Klein space.
Then, taking into account Theorem 7.3 and Proposition 7.2, we state the following.
Proposition 7.3 Let (M, ḡ) be a relativistic general Kaluza-Klein space. Then the
horizontal Ricci tensor is symmetric and satisfies

2Rα
β|α − R|β = 0, ∀β ∈ {0, 1, 2, 3}. (7.33)

In the next proposition we present two large classes of relativistic general Kaluza-
Klein spaces.
Proposition 7.4 Let (M, ḡ) be a general Kaluza-Klein space satisfying one of the
following conditions:
(i) (M, ḡ) has bundle-like metric.
(ii) The horizontal electromagnetic tensor field vanishes identically on M .

Then (M, ḡ) is a relativistic general Kaluza-Klein space.
Proof. First, suppose that (M, ḡ) has bundle-like metric. Then, (6.1a) implies
(7.26). Also, by using (6.1a) and (6.3) into (7.17b), we obtain Rα

μ
β4 = 0, for all

α, β, μ ∈ {0, 1, 2, 3}. Thus, (7.32) is satisfied too. In case of condition (ii), we have
Fαβ = 0, for all α, β ∈ {0, 1, 2, 3}, and therefore both conditions (7.26) and (7.32)
are satisfied.
Remark 7.1 Clearly, the model presented by Randall and Sundrum23),24) as an
alternative to compactification satisfies condition (ii) and, therefore, it is a relativistic
general Kaluza-Klein space.
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§8. The horizontal Einstein gravitational tensor field

In the first part of this section we define some new differential operators related
to the horizontal distribution. First, we consider a smooth function f on M , and
define its horizontal differential as the horizontal 1-form denoted by dhf and defined
by

dhf =
δf

δxα
dxα = f|αdxα. (8.1)

Then, we consider an adapted coframe field {dxα, δx4}, where δx4 is given by (1.18),
and state that

dhf = df − ∂f

∂x4
δx4, (8.2)

where df is the usual differential of f on M .
Indeed, by using (1.10) and (1.18) in (8.1), we obtain

dhf =
(

∂f

∂xα
− Aα

∂f

∂x4

)
dxα =

∂f

∂xα
dxα − ∂f

∂x4

(
δx4 − dx4

)
= df − ∂f

∂x4
δx4.

Next, we consider a symmetric horizontal tensor field A of type (0, 2) on M , and
define its horizontal divergence, as the horizontal covector field divhA given by

(divhA)(hY ) =
3∑

γ=0

εγ(∇EγA)(Eγ , hY ), ∀Y ∈ Γ (TM), (8.3)

where {Eγ} is a local orthonormal basis in Γ (HM) and ∇ is the Riemannian hor-
izontal connection given by (3.4). Clearly, (8.3) is independent of the basis {Eγ}
and define a horizontal covector field on M . Moreover, (8.3) coincides with the well
known formula for the divergence of a symmetric tensor field on a pseudo-Riemannian
manifold (cf. O’Neill,18) p. 86), but here the Riemannian horizontal connection is
used instead of the Levi-Civita connection. For our purpose, we need a formula for
horizontal divergence by using the local components of A with respect to an adapted
frame field {δ/δxα} on HM . Thus, we put

(a) Aαβ = A

(
δ

δxα
, δ

δxβ

)
, (b) Aγ

α = Aαβgβγ , (8.4)

and prove the following.
Proposition 8.1 Let (M, ḡ) be a general Kaluza-Klein space and A be a symmetric
horizontal tensor field on M . Then the horizontal divergence of A is given by

divh A = Aγ
α|γdxα, (8.5)

where “|” denotes the covariant derivative with respect to ∇, that is, we have

Aγ
α|μ =

δAγ
α

δxμ
+ Aν

αΓν
γ

μ − Aγ
νΓα

ν
μ.
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Proof. First, by using (7.21) and (7.22) into (8.3), we obtain

(divhA)
(

δ

δxα

)
= gγμ

(
∇ δ

δxμ

A

)(
δ

δxγ
, δ

δxα

)
= gγμAαγ|μ, (8.6)

where we have
Aαγ|μ =

δAαγ

δxμ
− AνγΓα

ν
μ − AανΓγ

ν
μ.

Then, by using (3.11a) and (8.4b), we deduce that

(divhA)
(

δ

δxα

)
= Aμ

α|μ,

which proves (8.5).

Now, following Einstein’s theory of general relativity on a Lorentz manifold, we
define on the Lorentz bundle (HM, g), the horizontal tensor field G given by

G(hX, hY ) = Ric(hX, hY ) − R

2
g(hX, hY ), ∀X, Y ∈ Γ (TM). (8.7)

Then, we call G the horizontal Einstein gravitational tensor field on the general
Kaluza-Klein space (M, ḡ). Locally, we put

Gαβ = G

(
δ

δxβ
, δ

δxα

)
, (8.8)

and, by using (7.24) and (1.13), we deduce that

Gαβ = Rαβ − R

2
gαβ. (8.9)

Next, we can state the following important result.
Theorem 8.1 Let (M, ḡ) be a relativistic general Kaluza-Klein space. Then the
horizontal Einstein gravitational tensor field is a symmetric horizontal tensor field
and its horizontal divergence vanishes identically on M .
Proof. First, by Proposition 7.3 and (8.7), we deduce that G is a symmetric hori-
zontal tensor field. Then, from (8.7), we obtain

divhG = divh Ric − 1
2

dhR,

since divhg = 0. Finally, by using (8.5), (8.1) and (7.33), we deduce that

divhG =
(

Rγ
α|γ − 1

2
R|α

)
dxα = 0.

This completes the proof of the theorem.

So far, the study of a general Kaluza-Klein space M = M × K was mainly
concerned with two particular cases. One of them refers to the so-called factorizable
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case, which assumes that on M there exists a Lorentz metric and K is a warped
manifold. For a study of some multidimensional cosmological models which fall into
the factorizable case, see Günter, Starobinsky and Zhuk.9) The nonfactorizable case
is due to Randall and Sundrum,23),24) and assumes that M is warped manifold with a
factor that depends on the fifth dimension. Also, the canonical metric (4.11) from the
space-time-matter theory (see Chapter 6 in Wesson28)) belongs to the nonfactorizable
case. It is worth mentioning that all these models are relativistic general Kaluza-
Klein spaces and, therefore, their horizontal Einstein gravitational tensor fields are
symmetric and of horizontal divergence zero.

§9. Ricci tensor and scalar curvature of a general Kaluza-Klein space

In the present section, we find the local components of the Ricci tensor of a
general Kaluza-Klein space with respect to an adapted frame field. The formulae
for both the Ricci tensor and the scalar curvature of (M, ḡ), are expressed in terms
of the horizontal Ricci tensor, horizontal scalar curvature, and the horizontal tensor
fields D, F and B from §2.

Let ∇ be the Levi-Civita connection on (M, ḡ) and R be the curvature tensor
field of ∇ given by a similar formula as in (7.2b). Consider the adapted frame field
{δ/δxα, ∂/∂x4} on M and introduce the following local components of R:

(a) R

(
δ

δxγ
, δ

δxβ

)
δ

δxα
= Rα

μ
βγ

δ

δxμ
+ Rα

4
βγ

∂

∂x4
,

(b) vR

(
∂

∂x4
, δ

δxβ

)
δ

δxα
= Rα

4
β4

∂

∂x4
· (9.1)

Remark 9.1 It is important to note that the functions Rα
μ

βγ , Rα
4
βγ and Rα

4
β4 sat-

isfy some tensorial transformations with respect to the four- and cut-transformations
(1.7), and therefore they define horizontal tensor fields of type (1, 3), (0, 3) and (0, 2),
respectively. This is one of the advantages of our new approach.

Now, we prove the following.
Proposition 9.1 The local components of R expressed in (9.1) are given by

(a) Rα
μ

βγ = Rα
μ

βγ +
(

1
2

Fαβ − εDαβ

) (
Dγ

μ +
ε

2
Fγ

μ
)

−
(

1
2

Fαγ − εDαγ

)(
Dβ

μ +
ε

2
Fβ

μ
)
− ε

2
Fα

μFβγ ,

(b) Rα
4
βγ =

1
2

(
Fαβ|γ − Fαγ|β

)
+ ε

(
Dαγ|β − Dαβ|γ

)
+ BαFβγ ,

(c) Rα
4
β4 = Bα|β +

1
2

Fαβ|4 − εDαβ|4 + FαμDβ
μ − εDαμDβ

μ

−ε

4
Fα

μFμβ − BαBβ, (9.2)

where Rα
μ

βγ are given by (7.17a), and the covariant derivatives are taken with respect
to the Riemannian horizontal connection ∇ and are given by (3.26) and (3.27).
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Proof. First, by using (3.13a) and (3.13c), we obtain

∇ δ
δxγ

∇ δ
δxβ

δ

δxα

=
{

δΓα
μ

β

δxγ
+ Γα

ν
βΓν

μ
γ +

(
1
2

Fαβ − εDαβ

)(
Dγ

μ +
ε

2
Fγ

μ
)}

δ

δxμ

+
{

1
2

δFαβ

δxγ
+

1
2

FνγΓα
ν
β − ε

δDαβ

δxγ
− εDνγΓα

ν
β

}
∂

∂x4
· (9.3)

Then, by using (2.3a) and (3.13b), we infer that

∇h
δ

δxγ
, δ

δxβ

i δ

δxα
= Fβγ

(
Dα

μ +
ε

2
Fα

μ
) δ

δxμ
− BαFβγ

∂

∂x4
· (9.4)

Now, by using (7.2b) for R and taking into account (9.3), (9.4), (7.17a), (3.26a) and
(3.26b), we deduce that

R

(
δ

δxγ
, δ

δxβ

)
δ

δxα
=

{
Rα

μ
βγ +

(
1
2

Fαβ − εDαβ

) (
Dγ

μ +
ε

2
Fγ

μ
)

−
(

1
2

Fαγ − εDαγ

)(
Dβ

μ +
ε

2
Fβ

μ
)
− ε

2
Fα

μFβγ

}
δ

δxμ

+
{

1
2

(
Fαβ|γ − Fαγ|β

)
+ ε(Dαγ|β − Dαβ|γ) + BαFβγ

}
∂

∂x4
· (9.5)

By comparing (9.1a) and (9.5), we obtain both (9.2a) and (9.2b). Next, by direct
calculations using (3.13) and (2.3b), we obtain

v∇ ∂
∂x4

∇ δ
δxβ

δ

δxα
=

{
1
2

∂Fαβ

∂x4
− ε

∂Dαβ

∂x4
− BμΓα

μ
β

}
∂

∂x4
,

v∇ δ
δxβ

∇ ∂
∂x4

δ

δxα
=

{(
Dα

ν +
ε

2
Fα

ν
) (

1
2

Fνβ − εDνβ

)
− δBα

δxβ

}
∂

∂x4
,

v∇h
∂

∂x4
, δ

δxβ

i δ

δxα
= BαBβ

∂

∂x4
· (9.6)

Then, by using (9.6), (3.26c), (3.27a) and (3.27b) into (7.2b) for R, we deduce that

vR

(
∂

∂x4
, δ

δxβ

)
δ

δxα
=

{
Bα|β +

1
2

Fαβ|4 − εDαβ|4 + FανDβ
ν − εDανDβ

ν

−ε

4
Fα

νFνβ − BαBβ

} ∂

∂x4
·

Finally, comparing this with (9.1b), we obtain (9.2c). This completes the proof of
the proposition.

Next, we consider the curvature tensor field of type (0, 4) of the Levi-Civita
connection ∇ on (M, ḡ) given by

R(X, Y, Z, U) = ḡ(R(X, Y )U, Z), ∀X, Y, Z, U ∈ Γ (TM), (9.7)
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where R from the right-hand side is given by (7.2b), with ∇̃ = ∇. Then, following
O’Neill,18) (p. 87), we consider the Ricci tensor of (M, ḡ) given by

Ric(X, Y ) =
3∑

α=0

{εαR(Eα, X, Eα, Y )} + εR

(
∂

∂x4
,X , ∂

∂x4
, Y

)
, (9.8)

for any X, Y ∈ Γ (TM), where {Eα} is an orthonormal basis in Γ (HM) of signatures
{εα}, and ∂/∂x4 is the unit vertical vector field of signature ε (cf. (1.6)).

Now, take an adapted frame field {δ/δxα, ∂/∂x4}, and put

(a) Rαβ = Ric
(

δ

δxβ
, δ

δxα

)
, (b) Rα4 = Ric

(
δ

δxα
, ∂

∂x4

)
,

(c) R44 = Ric
(

∂

∂x4
, ∂

∂x4

)
· (9.9)

Then, by using (9.9), (9.8), (7.21), (7.22), (9.7), (9.1), (1.13) and (1.6), we obtain

(a) Rαβ = gμν ḡ

(
R

(
δ

δxμ
, δ

δxβ

)
δ

δxα
, δ

δxν

)
+ εḡ

(
R

(
∂

∂x4
, δ

δxβ

)
δ

δxα
, ∂

∂x4

)
= Rα

μ
βμ + Rα

4
β4,

(b) Rα4 = gμν ḡ

(
R

(
δ

δxα
, δ

δxν

)
δ

δxμ
, ∂

∂x4

)
= εgμνRμ

4
να,

(c) R44 = gμν ḡ

(
R

(
∂

∂x4
, δ

δxν

)
δ

δxμ
, ∂

∂x4

)
= εgμνRμ

4
ν4. (9.10)

Next, we prove the following.
Theorem 9.1 The local components of the Ricci tensor of the general Kaluza-Klein
space (M, ḡ) with respect to the adapted frame field {δ/δxα, ∂/∂x4} are given by

(a) Rαβ = Rαβ − ε

2
Fα

μFβμ +
(

1
2

Fαβ − εDαβ

)
Dμ

μ +
1
2

FαμDβ
μ

+
1
2

DαμFβ
μ + Bα|β +

1
2

Fαβ|4 − εDαβ|4 − BαBβ,

(b) Rα4 = ε

(
1
2

Fα
μ|μ + BμFμα

)
+ Dα

μ|μ − Dμ
μ|α,

(c) R44 = ε(Bμ|μ − BμBμ) − Dμ
μ|4 − Dμ

νDν
μ +

1
4

FμνFμν , (9.11)

where Rαβ are the local components of the horizontal Ricci tensor given by (7.24).
Proof. First, by using (9.10a), (9.2a), (9.2c), (7.24), and taking into account that
F and D are skew-symmetric and symmetric horizontal tensor fields respectively, we
obtain (9.11a). Then, (9.11b) is obtained from (9.10b), by using (9.2b), (3.11a) and
(3.12). Finally, by using (9.10c), (9.2c), (3.11a) and (3.12), and taking into account
that

Fμ
νDν

μ = FμγDμγ = 0,
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we obtain (9.11c). Thus, the proof is complete.

Now, we consider the scalar curvature R of (M, ḡ) given by

R =
3∑

α=0

εγ Ric(Eγ , Eγ) + ε Ric
(

∂

∂x4
, ∂

∂x4

)
· (9.12)

Then, by using (7.21), (7.22), (9.9a) and (9.9c) into (9.12), we deduce that

R = gαβRαβ + εR44. (9.13)

Theorem 9.2 The scalar curvature and the horizontal scalar curvature of the ge-
neral Kaluza-Klein space (M, ḡ) are related by

R = R − ε
{1

4
FμνFμν + (Dμ

μ)2 + 2Dμ
μ|4 + Dμ

νDν
μ
}

+ 2Bμ|μ − 2BμBμ. (9.14)

Proof. First, by using (9.11a), (7.25), (3.11) and (3.12), and taking into account
that F is a skew-symmetric horizontal tensor field, we obtain

gαβRαβ = R − ε
{1

2
FμνFμν + (Dμ

μ)2 + Dμ
μ|4

}
+ Bμ|μ − BμBμ. (9.15)

Then, (9.14) is obtained from (9.13) by using (9.15) and (9.11c).

§10. Horizontal Einstein equations on a relativistic general
Kaluza-Klein space

In this section, we suppose that (M, ḡ) is a relativistic general Kaluza-Klein
space, that is, the two constraints (7.26) and (7.32) are satisfied. By Theorem 8.1
we know that the horizontal Einstein gravitational tensor field Gαβ given by (8.9) is
a symmetric horizontal tensor field whose horizontal divergence vanishes identically
on M .

Now, let G be the Einstein gravitational tensor field of (M, ḡ) given by

G(X, Y ) = Ric(X, Y ) − R

2
ḡ(X, Y ), ∀X, Y ∈ Γ (TM), (10.1)

and put

(a) Gαβ = G

(
δ

δxβ
, δ

δxα

)
, (b) Gα4 = G

(
δ

δxα
, ∂

∂x4

)
,

(c) G44 = G

(
∂

∂x4
, ∂

∂x4

)
· (10.2)

It is easy to see that (Gαβ) and (Gα4) define a symmetric horizontal tensor field of
type (0, 2) and a horizontal covector field respectively, while G44 is a function that
is globally defined on M . Moreover, by using (10.1), (10.2), (9.9), (1.13), (1.14) and
(1.6), we obtain

(a) Gαβ = Rαβ − R

2
gαβ, (b) Gα4 = Rα4, (c) G44 = R44 − εR

2
· (10.3)
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Next, by using the horizontal electromagnetic tensor field Fαβ given by (2.4a), we
construct the horizontal tensor field E with the local components

Eαβ = E

(
δ

δxβ
, δ

δxα

)
=

1
4

gαβFμνFμν − Fα
μFβμ, (10.4)

where Fα
μ and Fμν are given by (3.12a) and (3.12b), respectively. Then, according

to the terminology from the classical electromagnetic theory, we call E given by
(10.4) the horizontal electromagnetic energy-momentum tensor field on the relativis-
tic general Kaluza-Klein space (M, ḡ).
Proposition 10.1 The Einstein gravitational tensor field G of the relativistic gene-
ral Kaluza-Klein space (M, ḡ) is given by

(a) Gαβ = Gαβ +
ε

2
Eαβ +

(
1
2

Fαβ − εDαβ

)
Dμ

μ +
1
2

FαμDβ
μ

+
1
2

DαμFβ
μ + Bα|β +

1
2

Fαβ|4 − εDαβ|4 − BαBβ

+ gαβ

{
BμBμ − Bμ|μ +

ε

2
(
(Dμ

μ)2 + 2Dμ
μ|4 + Dμ

νDν
μ
)}

,

(b) Gα4 = ε
(
Fα

μ|μ + BμFμα

)
+ Dα

μ|μ − Dμ
μ|α,

(c) G44 =
3
8

FμνFμν − ε

2
R +

1
2

(
(Dμ

μ)2 − Dμ
νDν

μ
)
, (10.5)

where Gαβ and R are the local components of the horizontal Einstein gravitational
tensor field and the horizontal scalar curvature of (M, ḡ).
Proof. First, by using (9.11a) and (9.14) into (10.3a), and taking into account
(8.9) and (10.4), we obtain (10.5a). Then, (10.5b) is obtained from (10.3b) by using
(9.11b). Finally, by using (9.11c) and (9.14) into (10.3c), we deduce (10.5c).

Next, we suppose that (M, ḡ) is a relativistic general Kaluza-Klein space con-
taining matter with stress-energy tensor T . Then, the Einstein equations in (M, ḡ)
have the form

G = k̄ T , (10.6)

where k̄ is a real constant. We consider the adapted frame field {δ/δxα, ∂/∂x4} on
M , and put

(a) Tαβ = T

(
δ

δxβ
, δ

δxα

)
, (b) Tα4 = T

(
δ

δxα
, ∂

∂x4

)
,

(c) T 44 = T

(
∂

∂x4
, ∂

∂x4

)
· (10.7)

As in the case of the Einstein gravitational tensor field, we note that Tαβ and Tα4

define a symmetric horizontal tensor field and a horizontal covector field respectively,
while T 44 is a function globally defined on M . Locally, (10.6) are expressed as follows:

(a) Gαβ = k̄Tαβ, (b) Gα4 = k̄Tα4, (c) G44 = k̄T 44. (10.8)

Now, we can state the following theorem.
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Theorem 10.1 The Einstein equations on the relativistic general Kaluza-Klein space
(M, ḡ) with stress-energy tensor T are expressed as follows:

(a) Gαβ = k̄Tαβ − ε

2
Eαβ +

(
εDαβ − 1

2
Fαβ

)
Dμ

μ − 1
2

FαμDβ
μ

−1
2

DαμFβ
μ − Bα|β − 1

2
Fαβ|4 + εDαβ|4 + BαBβ

−gαβ

{
BμBμ − Bμ|μ +

ε

2
(
(Dμ

μ)2 + 2Dμ
μ|4 + Dμ

νDν
μ
)}

,

(b)
1
2

Fα
μ|μ + BμFμα = ε(k̄Tα4 − Dα

μ|μ + Dμ
μ|α),

(c)
3
8

FμνFμν = k̄
(
T 44 − ε

2
Tαβgαβ

)
+

3
2
{Dμ

νDν
μ + Dμ

μ|4 + ε(BμBμ − Bμ|μ)}. (10.9)

Proof. First, (10.9a) is obtained from (10.8a) by using (10.5a). Then, in a similar
way, by using (10.5b) into (10.8b), we deduce (10.9b). Next, by contracting (10.4)
with gαβ, we obtain

gαβEαβ = 0. (10.10)

Then, contracting (10.9a) by gαβ and using (10.10), (8.9), (7.25) and (3.11b), and
taking into account that Fαβ are skew-symmetric, we deduce that the horizontal
scalar curvature of (M, ḡ) is given by

R = −k̄Tαβgαβ + ε(Dμ
μ)2 + 2εDμ

νDν
μ + 3(BμBμ − Bμ|μ + εDμ

μ|4). (10.11)

Finally, by using (10.8c) and (10.11) into (10.5c), we obtain (10.9c).

Next, we define the horizontal stress-energy tensor T = (Tαβ) by

Tαβ =
1
k

{
k̄Tαβ − ε

2
Eαβ +

(
εDαβ − 1

2
Fαβ

)
Dμ

μ − 1
2

FαμDβ
μ

−1
2

DαμFβ
μ − Bα|β − 1

2
Fαβ|4 + εDαβ|4 + BαBβ

− gαβ

(
BμBμ − Bμ|μ +

ε

2
(
(Dμ

μ)2 + 2Dμ
μ|4 + Dμ

νDν
μ
)) }

. (10.12)

Then, Eq. (10.9a) becomes
Gαβ = kTαβ, (10.13)

and are called the horizontal Einstein equations on the relativistic general Kaluza-
Klein space (M, ḡ).
Remark 10.1 Taking into account that all the geometric objects involved in equa-
tions (10.9) and (10.13) are either horizontal tensor fields or functions globally defined
on M , we conclude that these equations are invariant with respect to the four- and
cut-transformations (1.7).
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Corollary 10.1 The Einstein equations on a relativistic Einstein-Bergmann space
(M, ḡ) are expressed as follows:

(a) Gαβ = k̄Tαβ − ε

2
Eαβ +

(
εDαβ − 1

2
Fαβ

)
Dμ

μ − DαμFβ
μ

+εDαβ|4 −
ε

2
gαβ

(
(Dμ

μ)2 + 2Dμ
μ|4 + Dμ

νDν
μ
)
,

(b)
1
2

Fα
μ|μ = ε

(
k̄Tα4 − Dα

μ|μ + Dμ
μ|α

)
,

(c)
3
8

FμνFμν = k̄
(
T 44 − ε

2
Tαβgαβ

)
+

3
2

(
Dμ

νDν
μ + Dμ

μ|4
) · (10.14)

Proof. First, we see that (10.14b) and (10.14c) are obtained from (10.9b) and
(10.9c) respectively via (5.1). Then, taking into account that in this case Fαβ do not
depend on x4, and by using (3.27a), we deduce that

Fαβ|4 = −FαμDβ
μ + DαμFβ

μ. (10.15)

Finally, (10.14a) is obtained from (10.9a), by using (5.1) and (10.15).
Remark 10.2 Formally, the horizontal Einstein equations (10.14a) look like equa-
tions (35) obtained by Einstein and Bergmann in 7). The main difference is that the
Riemannian horizontal connection we use here is a metric connection, while the co-
variant differentiation used in 7) satisfies only (3.10a) and (3.11a). Also, the adapted
frame fields allow us to consider the local components Tαβ of the stress-energy tensor
T .
Remark 10.3 Equations (10.14b) have the same form as equations (36) in 7). How-
ever, the equations from (10.14c) do not have a correspondent in 7).

Next, taking into account that any general Kaluza-Klein space with bundle-like
metric is relativistic (see Proposition 7.4), and by using (6.1) and (3.27a), from
Theorem 10.1 we deduce the following corollary.
Corollary 10.2 The Einstein equations on a general Kaluza-Klein space with bundle-
like metric are expressed as follows:

(a) Gαβ = k̄Tαβ − ε

2
Eαβ − Bα|β − 1

2
∂Fαβ

∂x4
+ BαBβ − gαβ(BμBμ − Bμ|μ),

(b)
1
2

Fα
μ|μ + BμFμα = εk̄Tα4,

(c)
3
8

FμνFμν = k̄
(
T 44 − ε

2
Tαβgαβ

)
+

3ε

2
(
BμBμ − Bμ|μ

) · (10.16)

Finally, taking into account that a classical Kaluza-Klein space is both an
Einstein-Bergmann space and a general Kaluza-Klein space with bundle-like met-
ric, from Corollaries 10.1 and 10.2 we deduce the following:
Corollary 10.3 The Einstein equations on a classical Kaluza-Klein space (M, ḡ)
are expressed as follows:

(a) Gαβ = k̄Tαβ − ε

2
Eαβ, (b)

1
2

Fα
μ|μ = εk̄Tα4,

(c)
3
8

FμνFμν = k̄
(
T 44 − ε

2
Tαβgαβ

)
. (10.17)
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Remark 10.4 From (10.17) we deduce that the local components of the stress-
energy tensor T with respect to the adapted frame field {δ/δxα, ∂/∂x4} are neces-
sarily functions of (x0, x1, x2, x3} alone.

§11. A comparison with other approaches

As it is well known, the classical Kaluza-Klein theory was build by using the
Levi-Civita connection on both, the spacetime and the 5D space. In the general
case, where gαβ are functions of all five variables, it is raised the question: What
is going to be instead of Levi-Civita connection on the spacetime? We answer this
question by considering the splitting (1·3) of T (M̄), and constructing what we call
the Riemannian horizontal connection ∇ on the horizontal distribution HM̄ . By
using this connection we classify the geodesics of the 5D space (M̄, ḡ), and construct
new geometric objects: horizontal Ricci tensor Rαβ, horizontal Ricci curvature R,
and horizontal Einstein gravitational tensor field Gαβ. It is noteworthy that both
Rαβ and Gαβ behave as local components of horizontal tensor fields (or 4D tensors
fields), that is, with respect to the transformations (1·7) we have

(a) Rαβ = R̃μν
∂x̃μ

∂xα

∂x̃ν

∂xβ
, (b) Gαβ = G̃μν

∂x̃μ

∂xα

∂x̃ν

∂xβ
. (11.1)

As a consequence of (11·1a) the horizontal scalar curvature R (see (7·25)) is
indeed invariant with respect to (1·7). Moreover, the horizontal Einstein equations
(or 4D Einstein equations) given by (10·13) are also invariant with respect to (1·7).

Einstein and Bergmann7) defined a 4D covariant differentiation which is only
h-metric, that is (3·10a) is satisfied, while (3·10b), in general, is not satisfied. As a
consequence of this, there are important differences in the study of curvature tensors
of these connections.

Now, we describe the approach of Wesson and his colaborators (see 28)), and
compare it with our approach. First, we note that in these papers on space-time-
matter theory, the 4D covariant differentiation was given by the local coefficients

Γ 
γ
α β =

1
2
gγμ

{
∂gμα

∂xβ
+

∂gμβ

∂xα
− ∂gαβ

∂xμ

}
, (11.2)

which imitate the Christoffel symbols on the 4D spacetime from classical Kaluza-
Klein theory. Performing a long but not a difficult calculation, by taking into account
that gαβ and gαβ are the local components of horizontal tensor fields of type (0, 2)
and (2, 0) respectively, and using (1·8) we deduce that

Γ 
γ
α β

∂x̃μ

∂xγ = Γ̃ 
μ
ν λ

∂x̃ν

∂xα
∂x̃λ

∂xβ + ∂2x̃μ

∂xα∂xβ

+1
2 g̃μσ

{
∂g̃σν

∂x̃4
∂x̃ν

∂xα
∂h
∂xβ + ∂g̃σν

∂x̃4
∂x̃ν

∂xβ
∂h
∂xα − ∂g̃νλ

∂x̃4
∂x̃ν

∂xα
∂x̃λ

∂xβ
∂h
∂x̃σ

}
, (11.3)

with respect to four- and cut-transformations (1·7). Comparing (11·3) with the usual
transformations of Christoffel symbols (see (4·9)), we observe that in the general case,
were gαβ do depend on the fifth coordinate, the local coefficients Γ 
γ

α β given by (11·2)
do not define a 4D covariant differentiation. As a direct consequence, the usual Ricci
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tensor R

αβ constructed by using the local coefficients from (11·2), does not satisfy

transformations of the form (11·1a), and therefore the scalar curvature

R
 = R

αβgαβ,

is not invariant with respect to the transformations (1·7). Thus, the Einstein equa-
tions on (M̄, ḡ) expressed as in (10·9) do not have tensorial character, and therefore
they are not invariant with respect to (1·7). We should remark that if the electro-
magnetic potentials Aα are not considered in a space-time-matter theory, then the
local coefficients from (11·2) coincides with the local coefficients of the Riemannian
horizontal connection defined in the present paper (see (3·8)).

Another difference between our approach and the space-time-matter theory de-
veloped so far, refers to the 4D electromagnetic tensor field. In the theory we devel-
oped in the paper, such a tensor field is defined by (2·4a) and its local components
satisfy

Fαβ = F̃μν
∂x̃μ

∂xα

∂x̃ν

∂xβ
, (11.4)

with respect to the transformations (1·7). In the space-time-matter theory, the
electromagnetic tensor field is defined as in the classical Kaluza-Klein theory, that
is, we have (cf. Wesson,28) p. 134)

F 

αβ =

∂Aβ

∂xα
− ∂Aα

∂xβ
. (11.5)

Then by using (1·11) and (1·8a) we obtain

F 

αβ = F̃ 


μν

∂x̃μ

∂xα

∂x̃ν

∂xβ
+

∂Ãγ

∂x̃4

(
∂h

∂xα

∂x̃γ

∂xβ
− ∂h

∂xβ

∂x̃γ

∂xα

)
, (11.6)

with respect to (1·7). Comparing (11·6) with (11·4) we see that F 

αβ do not satisfy

tensorial transformations with respect to (1·7). Thus, any equation which contains
F 


αβ is not invariant with respect to the four- and cut-transformation (1·7). Moreover,
we cannot apply a 4D covariant differentiation to F 


αβ.
Finally, we note that we consider the general Kaluza-Klein space (M̄, ḡ) as a

fibre bundle over the 4D space M . In this way we define the induced motions on M
as projections of geodesics of (M̄, ḡ) on M . Contrary to this situation, in space-time-
matter theory, the induced motions an M are defined by using an embedding of M
in (M̄, ḡ). Thus, in this case, the induced motions on M depend on such embedding.
Moreover, if the embedding is locally given by x4 = k, for k ∈ R, then from (1·16)
we see that the functions

gαβ(xγ , k) + εAα(xγ , k)Aβ(xγ , k),

represent the local components of the induced Lorentz metric on M . Clearly, such a
metric is not easy to handle in order to study its curvature. For this reason, most of
the papers published on space-time-matter theory, do not consider the electromag-
netic potentials into the theory.
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§12. Conclusions

We have presented a new point of view on general Kaluza-Klein theories on a
5D space. This is based on the Riemannian horizontal connection constructed in §3,
which is going to play in this theory, the same role as the Levi-Civita connection
on the spacetime, in the classical Kaluza-Klein theory. An important feature of our
point of view is the presentation of both the equations of motion and the field equa-
tions on the 5D space, by using 4D geometric objects. This was done by considering
on the 5D space (M̄, ḡ) the adapted frame field {δ/δxα, ∂/∂x4} (see (1·10)) and the
theory of horizontal tensor fields. For the first time in literature, we split all the
equations on (M̄, ḡ) into groups of equations expressed in a covariant form, that is,
each group of equations is invariant with respect to the four- and cut-transformations
(1·7).

We believe that after a correct physical understanding of the fifth dimension
(or more general, of the extra dimensions), it will be possible to see practical ap-
plications of some general Kaluza-Klein theories. So far, a good part of physics
in rather invented than discovered in reality. Hopefully, the new mathematical ap-
proach presented in this paper for general Kaluza-Klein theories will be certified by
some experimental tests.

Finally, we claim that the present paper can be considered as a starting point
for a new approach of non-abelian Kaluza-Klein theories. Our work on this matter
is in a good progress, and we hope to finalize it in near future.
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