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ON THE FLATNESS OF CERTAIN SOLUTIONS OF THE
5D GRAVITY.

By John P. CONSTANTOPOULOS and Antony A. KRITIKOS.

Introduction. The main objective of this note is a systematic and complete
(from the Mathematical point of view) reexamination of the “Exact solution”,
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presented recently by Tomas Liko and Paul S. Wesson [6]1, in the coordinates t, 7,
g, ¢ and 1. Solutions of this type have some interesting applications according to
the aforementioned authors. Thus, revealing its mathematical features might be of
particular interest. More explicitly the solutions of this kind belong to the type {1,4}
according to a certain classification scheme, which was presented in reference [3| and
they are either flat or V/(0)-spaces, as has been explicitly demonstrated, among others,
i1 this reference. Tt is also worth noticing that Liko and Wesson in presenting their
solution state that: (1) “satisfies the Ricci-flat equation Rsp = 0 may be shown by
tedious algebra... and confirmed by computer”. Furthermore, the same authors in
the same reference declare that “the only practical way to show that (1) also satisfies
the Riemann flat equation Rapcp = 0 is by computer as may be verified”. However,
both the above statements can be casily and analytically proved, by two theorems
presented in reference [3] and for the broader class of solutions classified as solutions
of the type {1.4}. We also think that the classification scheme of the 5D gravity
presented there might be of further use in the future. The reason we can get such
results without much labor is due to the fact that solutions of the {1,4} type are
particular cases of the V(K ')-spaces the origin of which goes back to a work of De
Vries in 1954 [8]. The various geometric features of the aforementioned spaces have
also been recognized by the systematic investigations of Solodovnikov and Kruckovic
and the details can be found in references [5] and {7]. The main contribution of
reference (3] is that it reorganizes the full mathematical background, due to De Vries,
Solodovnikov and Kruckovie, into an integrated classification scheme suitable for the
5D gravity as well as for any theory of Gravity in dimension N > 5 that follows the
conceptual scheme of Wesson et al.
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In the light of the above and assuming that there is a specific physical interest
in solution (1), we shall reconsider the analytic proof of both statements, i.e. the
statement that (1) is Ricci flat and the statement that (1) is a (locally) flat space,
in the context of the theory presented in [2] and [3]. We shall also indicate how the
theory applies in more complicated situations, where solutions of the 5D gravity of
the type {1,4} are encountered.

§ 1. Preliminaries. We recall that a V(K )-space is a semireducible space the
adjoint metric of which is that of a space of the constant curvature K (see [1], [2] and
[3]). A V(K)-space degenerates into a space of constant curvature if the adjoint metric
coincides with the original semireducible metric, i.e. if the slice(s) are 1-dimensional.
Now, equation {1la) can be rewritten in the form

(1c) dS? = edi? + 2do2, (e=-1),

(1d) do? = dt? — sinh*(t)do?,

where the line element do? is again given by (1b). Here, we have simplified the expres-
sions by taking, without any loss of generality, L = 1. We may also notice that (1b)
represents the line element of a 3D space of constant curvature —1. Equations (1c)
and (1d) explicitly demonstrate the semireducible character of the solution presented
by Liko and Wesson and the type of the solution. In particular, using the terminology
of section 2, in reference [3], we may notice that (1c) is of the type {1,4} and that
the 4D slice do? involved, is again a semireducible space of the type {1,3}. Thus,
this specific solution can be interpreted in the context of the semireducible spaces
as either a {1,{1,3}} type of a 5D solution or as a solution of the degencrate type
{2,2}. Further to this point it can be immediately recognized that the line element
(1c) is that of a V(0)-space, independently of the form of the line element doj. In
order to prove our assertion, it is sufficient to write down the adjoint metric?, or more
precisely the 2D adjoint line element, of the line element (1c), which is of the form

(2) dS? = edi? + 12dy?.

Obviously, by inspection this is the line element corresponding to a flat two di-
mensional space. Hence, the line element (1c¢) is that of a V/(0)-pace, by construction
and the analysis of reference [3] fully applies.

§ 2. Proof of the statement that (1) is Ricci flat. In order to prove an-
alytically our assertion, it is sufficient to recall theorem 3 and theorem 4 of reference
[3]. In particular, theorem 3 of the previously mentioned reference states that in order
that the V(0)-space (1c) is Ricci flat (which is equivalent to saying that (1c) is the line
element of a special Einstein® space), it is necessary and sufficient that the 4D slice is

2) Our terminology is that used in [5] and (7] by Kruckovic and Solodovnikov, a terminology that
has been fully adopted in the references [1], {2] and [3].

3) An Einstein space is a space for which, R2;; = xgi;, where & is necessarily a constant. In a special
Einstein space s = 0. The sign and the value of kx = 0, depends on the conventions adopted.
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an Einstein space of the scalar curvature 12K, where K is the conjugate curvature
of the slice do? in the O-analysis (1c). The proof of this theorem can be found in
references [1] and [7]. Its origin in a disguised form goes back to reference [8] and
a summary form of the full theory can be found in [2]. In our case, K; = —1. The
calculation here is trivial and can be carried out by inspection, by means of equation
(2.3) of refercnce [3] (which is the general formula for the calculation of the conjugate
curvature in any K-analysis). Now, our task has been simplified considerably. In
fact, we may notice that (1d) is a V(—1)-space for any possible choice of the slice
do3. In order to prove our statement it is sufficient to absorb the minus sign in the
definition of the line element do2, which could be negative definite, if necessary. Then
the resulting adjoint element is of the form

(3) do? = dt? + sinh®(¢)dz>.

Clearly, this is the line element of a 2D space of the constant curvature —1 (see
equation 6ii of page 272 in reference [4]). Hence, the original semireducible space
(1d) is by construction a V(—1)-space. However, because of the special choice (1b)
i.e. because the slice do? is that of the constant curvature —1, we can prove that
the aforementioned V' (—1)-space is a space of constant curvature —1. In fact, this is
an immediate consequence of theorem 2 of reference [3]. In particular, we have that
the conjugate curvature of the slice do? is +1, where again the result is obtained by
means of equation (2.3) of reference {3]. On the other hand the slice —do3 is a space
of constant curvature +1. Hence, according to the aforementioned theorem 2 (1d)
represents a degenerate V(—1)-space, i.e. a space of the constant curvature —1. Yet
spaces of constant curvature are trivially Einstein spaces. Thus, according to theorem
3, the original V(0)-space (1c) is a (special) Einstein space, or in the terminology of
Liko and Wesson a Ricci flat space.

§ 3. Proof of the flatness of the solution (1). The flatness of the solution
(1) is an immediate consequence of our previous proof or alternatively an immediate
consequence of theorem 2 of reference [3]. In particular, using theorem 3 previously,
we have considered the slice do3, which is a degenerate Einstein space, i.e. a space
of constant curvature. This means that, in agreement with theorem 2, the resulting
V(0)-space is also a degenerate special Einstein space, i.e. a locally flat space.

§ 4. Discussion. The methodology illustrated above can be used in principle
for the construction of arbitrary non flat solutions of the 5D gravity of the type {1,4}.
In particular, it is sufficient to start with any Einstein space of scalar curvature 12¢
(the particular value depends on the conventions adopted) and use this space as a
slice in (1c). Theoretn 3, in reference [3], guarantees that the resulting line element
represents an ezact solution of the 5D gravity. It is also worth noticing that the sign
of the extra dimension €, determines the “quality” of the solution since it determines
the scalar curvature of the original 4D space which ezpands into the final 5D solution.
Now, theorem 2, in reference [3] can be used as a criterion for the flatness or not of
the obtained solution. Further to this point, it has been proved in reference [3] that
for n = 5, there are eleven distinct classes of semireducible solutions. Among these
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types only the type {1.4} involves solutions that are V(0)-spaces (e.g. the solution of
McManus, mentioned by Liko and Wesson in [6], is again of the type {1,4}). This is
important because in this case we have all the solutions that are, roughly speaking,
closer to the trivial 5D flat vacuum. Clearly, these solutions are “different” from the
solutions that are distributed in the remaining ten classes and this has been stressed
in detail in the aforementioned reference. This property of the solutions of the type
{1,4}, in physical terms, reflects into the fact that the induced 4D cnergy momentum
tensor prescribes the signature of the 4D vacuum.
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